
Journal of Virtual Reality and Broadcasting, Volume 9(2012), no. 4

Sharpness Matching in Stereo Images

Colin Doutre and Panos Nasiopoulos

Department of Electrical and Computer Engineering
The University of British Columbia

Vancouver, BC, Canada
email: colind@ece.ubc.ca, panos@ece.ubc.ca

www: www.ece.ubc.ca/ colind, panos

Abstract

When stereo images are captured under less than ideal
conditions, there may be inconsistencies between the
two images in brightness, contrast, blurring, etc. When
stereo matching is performed between the images,
these variations can greatly reduce the quality of the
resulting depth map. In this paper we propose a
method for correcting sharpness variations in stereo
image pairs which is performed as a pre-processing
step to stereo matching. Our method is based on scal-
ing the 2D discrete cosine transform (DCT) coeffi-
cients of both images so that the two images have the
same amount of energy in each of a set of frequency
bands. Experiments show that applying the proposed
correction method can greatly improve the disparity
map quality when one image in a stereo pair is more
blurred than the other.
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1 Introduction

Stereo matching is a classical problem in computer vi-
sion that has been extensively studied [SS02]. It has
many applications such as 3D scene reconstruction,
image based rendering, and robot navigation. Most
stereo matching research uses high quality datasets
that have been captured under very carefully con-
trolled conditions. However, capturing well-calibrated
high quality images is not always possible, for exam-
ple when cameras are mounted on a robot [ML00],
or simply due to a low cost camera setup being used.
Capturing well calibrated stereo or multi-view video
sequences is a challenging problem, and in fact many
of the multiview sequences used by the Joint Video
Team (JVT) standardization committee have notice-
able inconsistencies between the videos captured with
different cameras [HOL+07]. Inconsistencies between
cameras can cause the images to differ in brightness,
colour, sharpness, contrast, etc. These differences re-
duce the correlation between the images and make
stereo matching more challenging, resulting in lower
quality depth maps.

A number of techniques have been proposed to
make stereo matching robust to radiometric differ-
ences between images (i.e., variations in bright-
ness, contrast, vignetting). The images can be pre-
filtered with a Laplacian of Gaussian kernel to re-
move changes in bias [MKLT95]. Various match-
ing costs have been proposed that are robust to vari-
ations in brightness such as normalized cross correla-
tion [Fua93] and mutual information [KKZ03]. An-
other successful technique is to take the rank transform
of the images [ZW94], which replaces each pixel by
the number of pixels in a local window that have a
value lower than the current pixel. An evaluation of
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several matching techniques that are robust to radio-
metric differences is presented in [HS07].

Much less work has addressed stereo matching
when there are variations in sharpness/blurring be-
tween the images. Variations in image sharpness may
result from a number of causes, such as the cameras
being focused at different depths, variations in shutter
speed, and camera shake causing motion blur.

In [PH07], a stereo method is proposed using a
matching cost based on heavily quantized DFT phase
values. Their phase-based matching is invariant to
convolution with a centrally symmetric point spread
function (psf), and hence is robust to symmetric blur-
ring. In [WWH+08] a method is proposed for per-
forming stereo matching on images where a small por-
tion of each image suffers from motion blur. A prob-
abilistic framework is used, where each region can be
classified as affected by motion blur or not. Differ-
ent smoothness parameters in an energy minimization
step are used for the pixels estimated as affected by
motion blur. Note that neither [PH07] nor [WWH+08]
attempts to correct the blurring in the images (they do
not modify the input images); instead, they attempt to
make the matching more robust to blurring.

Although not a stereo matching technique, a method
that does modify blurred multiview images is proposed
in [KLL+], for the purpose of coding multiview video
when there is focus mismatch between cameras. In
their method, first initial disparity vectors are calcu-
lated through block matching. Based on these vectors,
the images are segmented into different depth levels.
For each depth level, a filter is designed that will mini-
mize the mean-squared error between the image being
coded and a reference view being used for prediction.
While this technique does modify the images to correct
for sharpness variations, it only attempts to minimize
the prediction error for a set of disparity estimates; it
does not improve the disparity estimates themselves.

In this paper, we propose a fast method for correct-
ing sharpness variations in stereo images. Unlike pre-
vious works [PH07, WWH+08], the method is applied
as pre-processing before depth estimation. Therefore,
it can be used together with any stereo method. Our
method takes a stereo image pair as input, and modifies
the more blurred image so that it matches the sharper
image. Experimental results show that applying the
proposed method can greatly improve the quality of
the depth map when there are variable amounts of blur
between the two images. The rest of this paper is or-
ganized as follows. The proposed method is described

in section 2, experimental results are given in section 3
and conclusions are drawn in section 4.

2 Proposed Method

When an image is captured by a camera, it may be de-
graded by a number of factors, including optical blur,
motion blur, and sensor noise. Hence the captured im-
age can be modeled as:

ĩ(x, y) = h(x, y) ∗ i(x, y) + n(x, y) (1)

where i(x, y) is the “true” or “ideal” image and
h(x, y) is the point spread function (psf) of the captur-
ing process. The ’*’ operator represents two dimen-
sional convolution. The n(x, y) term is additive noise,
which is usually assumed to be independent of the sig-
nal and normally distributed with some variance σn2.
Throughout the paper, we will use the tilde ’̃’ to de-
note an observed (and hence degraded) image. The
psf, h(x, y), is usually a low-pass filter, which makes
the observed image blurred (high frequency details are
attenuated).

In the case of stereo images, we have left and right
images, iL and iR, for which the observed images can
be modeled as in equation 1:

ĩL(x, y) = hL(x, y) ∗ iL(x, y) + nL(x, y)

ĩR(x, y) = hR(x, y) ∗ iR(x, y) + nR(x, y)
(2)

If the same amount of blurring occurs in both im-
ages, i.e., hL and hR are the same, the images may
lack detail but they will still be consistent. Therefore,
stereo matching will still work reasonably well. We
are interested in the case where different amounts of
blurring occur in the images, so hL and hR are differ-
ent. Our method attempts to make the more blurred
image match the less blurred image by scaling the
DCT coefficients of the images. The basis for our
method is that un-blurred stereo images typically have
very similar frequency content, so that the signal en-
ergy in a frequency band should closely match be-
tween the two images. Therefore, we scale the DCT
coefficients in a set of frequency bands so that af-
ter scaling the image that originally had less energy
in the band will have the same amount of energy as
the other image. The resulting corrected images will
match closely in sharpness, making stereo matching
between the images more accurate. The steps of our
method are described in detail in the following sub-
sections
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Figure 1: Removing non-overlapping edge regions.
(a) Left and right original images with edge strips
used in search shown in red and matching regions
found through SAD search (equation 3) shown in blue.
(b) Images cropped with non-overlapping regions re-
moved.

2.1 Removing non-overlapping edge regions

Typical rectified stereo image pairs have a large over-
lapping area between the two images. However, there
is usually also a region on the left side of the left im-
age and a region on the right side of the right image
that are not visible in the other image (Fig. 1a). If
these non-overlapping areas are removed, the assump-
tion that the two images will have similar frequency
content is stronger.

In order to identify the overlapping region between
the two images, we consider two strips; one along the
right edge of iL and one along the left edge of iR (see
Figure 1a, regions highlighted in red). Strips five pix-
els wide are used in our experiments. We find match-
ing strips in the other image using simple block based
stereo matching. Using the sum of absolute differ-
ences (SAD) as a matching cost, two SAD values are
calculated for each possible disparity d, one for the
edge of iL and one for the edge of iR:

SADL(d) =
∑

(x,y)∈edgeL

| ĩL(x, y)− ĩR(x− d, y) |

SADR(d) =
∑

(x,y)∈edgeR

| ĩR(x, y)− ĩL(x− d, y) |

(3)
The disparity value d that minimizes the sum

SADL(d) + SADR(d) is chosen as the edge dispar-
ity D. Cropped versions of iL and iR are created by
removing D pixels from the left of iL and D pixels
from the right of iR (Figure 1b). These cropped im-
ages, which we will denote iLc and iRc, contain only
the overlapping region of iL and iR.

In equation 3, we have used the standard sum of
absolute differences as the matching cost. If there are
variations in brightness between the images, a more
robust cost should be used, such as normalized cross
correlation or mean-removed absolute differences.

2.2 Noise variance estimation

Noise can have a significant effect on blurred images,
particularly in the frequency ranges where the signal
energy is low due to blurring. We wish to remove
the effect of noise when estimating the signal energy,
which requires estimating the noise variance of each
image.

We take the two dimensional DCT [ANR74] of the
cropped images, which we will denote as ĨLc(u, v)
and ĨRc(u, v). The indices u and v represent hori-
zontal and vertical frequencies, respectively. These
DCT coefficients are affected by the additive noise.
We can obtain an estimate for the noise standard de-
viation from the median absolute value of the high fre-
quency DCT coefficients [HSK04]:

σN =

median(| Ĩ(u, v) |)
u>uT ,v>vT

0.6745
(4)

Values uT and vT are the thresholds for which DCT
coefficients are classified as high frequency. We have
used 20 less than the maximum values for u and v as
the thresholds in our tests, meaning 400 coefficients
used when calculating the median in equation 4. The
reasoning behind equation 4 is that the high frequency
coefficients are dominated by noise, with the signal en-
ergy concentrated in a small number of coefficients.
The use of the median function makes the estimator
robust to a few large coefficients which represent sig-
nal rather than noise. Using equation 4, we obtain esti-
mates for the noise standard deviation in both images,
σN,L and σN,R.

2.3 Division into frequency bands

We wish to correct the full left and right images, with-
out the cropping described in section 2.1. Therefore,
we also need to take the DCT of the original images,
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Figure 2: Division of DCT coefficients into M fre-
quency bands in each direction, illustrated for M = 8.

ĨL(u, v) and ĨR(u, v), so that those coefficients can be
scaled. This is in addition to taking the DCT of the
cropped images ĨLc(u, v) and ĨRc(u, v), from which
we will calculate the scaling factors. The DCT coeffi-
cients of each image have the same dimensions as the
image in the spatial domain. If the width and height
of the original images are W and H , the cropped im-
ages will have dimensions (W −D)xH . In the DCT
domain, the dimensions of the coefficients will also be
WxH for the original images and (W −D)xH for the
cropped images.

Our proposed method is based on the observation
that stereo images typically have very similar amounts
of energy in the same frequency ranges. Therefore,
we divide the DCT coefficients of both the original
and cropped images into a number of equally sized fre-
quency bands, as illustrated in Figure 2.

Each frequency band consists of a set of (u, v) val-
ues such that ui ≤ u < ui+1 and vj ≤ v < vj+1

where ui is the starting index of band i in the horizon-
tal direction and vj is the starting index of band j in
the vertical direction (Figure 2). If we use M bands
in both the horizontal and vertical directions, then the
starting frequency index of each band in the original
and cropped images are calculated as:

ui = round
(
i·W
M

)
, vj = round

(
j·H
M

)
ui,c = round

(
i·(W−D)

M

)
, vj,c = round

(
j·H
M

)
(5)

where ui and vj are the indexes for the original im-
ages, and ui,c and vj,c are the indexes for the cropped

images. Although ui and ui,c are different numbers,
they correspond to the same spatial frequencies.

The number of frequency bands to use in each di-
rection, M , is a parameter that must be decided. If
more bands are used, the correction can potentially be
more accurate. However, if too many bands are used,
each band will contain little energy and therefore the
estimate for the scaling factor will be less reliable. We
evaluate the impact of the number of bands used ex-
perimentally in Section 3.1.

The DC coefficient for each image, IL(0, 0) and
IR(0, 0), is treated as a special case, because the DC
coefficient usually has much more energy than any of
the AC coefficients, and has different statistical prop-
erties [RG83]. Therefore, we treat the DC coefficient
as a frequency band on its own (i.e. a band with only
one coefficient). The size of the band is smaller for the
DC coefficient, but otherwise the correction process is
done the same as for the other bands.

2.4 DCT coefficient scaling

Our assumption is that the true (un-blurred) images
should have the same amount of energy in each fre-
quency band. Therefore, we will scale the coefficients
in each band so that the left and right images have the
same amount of signal energy in each frequency band.
The energy of each observed image in band ij can be
computed as:

Enij(Ĩ) =

ui+1−1∑
u=ui

vi+1−1∑
v=vi

(Ĩ(u, v))2 (6)

We wish to remove the effect of noise from the en-
ergy calculated with 6. Let us define HI(u, v) as the
DCT of the blurred signal h(x, y) ∗ i(x, y), and define
N(u, v) as the DCT of the noise. Since we are using an
orthogonal DCT, N(u, v) is also normally distributed
with zero mean and variance σn2 . Given that the noise
is independent of the signal and zero mean, we can cal-
culate the expected value of the energy of the observed
signal:

Eb(Ĩ(u, v))2c
= E

[
(HI(u, v) +N(u, v))2

]
= E

[
(HI(u, v)2)

]
+ E

[
(N(u, v))2

]
= E

[
(HI(u, v))2

]
+ σN

2

(7)

Summing the above relation over all the DCT coef-
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ficients in a frequency band gives:

ui+1−1∑
u=ui

vi+1−1∑
v=vi

E
[
(Ĩ(u, v))2

]
=

ui+1−1∑
u=ui

vi+1−1∑
v=vi

E
[
(HI(u, v))2

]
+

ui+1−1∑
u=ui

vi+1−1∑
v=vi

σN
2

= Enij(HI) + CijσN
2

(8)
where Enij(HI) is the energy of the blurred signal

in frequency band ij and Cij is the number of coef-
ficients in the band. The left hand side of equation 8
can be estimated with the observed signal energy cal-
culated with equation 6. Therefore, we can estimate
the blurred signal energy in the band with:

Enij(HI) = max(0, Enij(Ĩ)− CijσN
2) (9)

In 9 we have clipped the estimated energy to be zero
if the subtraction gives a negative result since the en-
ergy must be positive (by definition). Using 9 we esti-
mate the signal energies Enij(HIL) and Enij(HIR).
We wish to multiply the coefficients in the image with
less energy by a gain factor (Gij) so that this image
ends up having the same amount of signal energy as
the other image. The scale factors to apply to each
image in this band can be found as:

Enij,max = max(Enij(HIL), Enij(HIR)) (10)

Gij,L =

√
Enij,max

Enij(HIL)

Gij,R =

√
Enij,max

Enij(HIR)

(11)

Note that either Gij,L or Gij,R will always be one.
The gain factors calculated with 11 do not consider
the effect of noise. If the signal energy is very low,
the gain will be very high, and noise may be ampli-
fied excessively (this is a common issue in all image
de-blurring methods [GW02]). To prevent noise am-
plification from corrupting the recovered image, we
multiply the gain by an attenuation factor, denoted A,
which lowers the gain applied to the band based on the
signal to noise ratio. Ideally, there would be no noise
in the images, and we would be able to calculate the
scaled DCT coefficients as . With noise, the scaled

coefficients will G · HI(u, v). With noise, the scaled
coefficients will actually be G · (HI(u, v)+N(u, v)).
We choose the attenuation factor (A) to minimize the
squared error between the ideal coefficients and the ac-
tual coefficients, i.e.,

min
A
Eb(G ·HI(u, v)−G ·A(HI(u, v)+N(u, v)))2c

(12)
The value of A minimizes 12 is given by:

Aij =
Enij,min

Enij,min + Cijσ2N,min

(13)

where Enmin = min(En(HIL), En(HIR)) and
σN,min

2 is the noise variance of the image that has
less signal energy in the band. We provide a deriva-
tion for 13 in the appendix. Note that by attenuating
the gain with equation 13, we are essentially using the
classic Wiener filter [Pra72, GW02] to limit the noise
in the final images.

The scaling factors, G and A are calculated based
on the DCT coefficients of the cropped images (be-
cause the assumption of equal signal energy in each
frequency band will be stronger for the cropped im-
ages). So equations 6 through 13 are all applied only
to the DCT coefficients of the cropped images. Once
G and A are calculated for a frequency band ij, we
scale the DCT coefficients of the original images:

IL,cor(u, v) = Gij,L ·Aij · ĨL(u, v)
IR,cor(u, v) = Gij,R ·Aij · ĨR(u, v)

for ui ≤ u < ui+1, vj ≤ v < vj+1

(14)
Note that we apply the same attenuation factor to the

coefficients from both the left and right images. This
ensures that the corrected images will have the same
amount of signal energy in the band, at the expense
of blurring the sharper image somewhat. However,
unless the noise variance is very high in the blurred
image, the sharper will not be affected much. Our
method sharpens one image and smoothes the other,
as the signal-to-noise ratio of the more blurred image
limits how much we sharpening we can apply. An ex-
ample showing the quality of the corrected images is
shown in the results section (Figure 6).

After calculating all of the scaling factors, and ap-
plying equation 14 for every frequency band, we will
have the complete DCT coefficients of the corrected
images, IL,cor(u, v) and IR,cor(u, v). Then we sim-
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ply take the inverse DCT to obtain the final corrected
images in the spatial domain.

After applying our method a colour correction pre-
processing method, for example histogram match-
ing [FBK08], could also be applied to reduce vari-
ations in brightness and colour between the images.
Alternatively, a matching cost that is robust to varia-
tions in brightness could be used in subsequent stereo
matching, such as those studied in [HS07].

3 Experimental Results

We test our proposed method on 10 stereo image pairs
from the Middlebury stereo page [SS11] that have
ground truth disparities obtained through a structured
light technique [SS03]. Thumbnails of the test images
are shown in Figure 3. The 2005 and 2006 data sets
from the Middlebury page (art, laundry, moebius, rein-
deer, aloe, baby1, rocks) all have seven views; we used
the one-third size versions of views 1 and 3 as the left
and right images in our tests.

Our sharpness correction method is a pre-
processing step performed before stereo matching,
and therefore it can be used together with any stereo
method. We test our method together with two
representative stereo algorithms; one simple window
based matching method, and one global method that
solves an energy minimization problem using Belief
Propagation (BP) [FH06].

Our window stereo method involves first perform-
ing block matching with a 9x9 window using sum
of absolute differences (SAD) as the matching cost.
A single disparity is chosen for each pixel that has
the minimum SAD (winner take all). A left-right
cross check is done [Fua93] to invalidate occluded
pixels and unreliable matches, and disparity segments
smaller than 160 pixels are eliminated [Hir03]. In-
valid pixels are interpolated by propagating neighbour-
ing background disparity values. Our window based
method is similar to the window based method used
for the comparative study in [HS07]. The global be-
lief propagation (BP) method solves a 2D energy min-
imization problem, taking into account the smoothness
of the disparity field. We refer readers to [FH06] for
the details of the BP method.

Two kinds of blurring filters are tested. Out-
of-focus blur, which is modeled with a disk filter
of a given radius [EL93], and linear motion blur,
which is modelled as an average of samples along
a straight line of a given length. We use the MAT-

LAB commands fspecial(’disk’, ...) and
fspecial(’motion’, ...) to generate the
blurring filters.

The performance metric we use is the percentage of
’bad’ pixels in the disparity map in the un-occluded
regions of the image. A bad pixel is defined as one
where the calculated disparity differs from the true dis-
parity by more than one pixel. This is the most com-
monly used quality measure for disparity maps, and
it has been used in major studies such as [SS02] and
[HS07].

3.1 Impact of number of frequency bands

In this section we evaluate how the performance of our
method is affected by the number of frequency bands
used in each direction (M), as described in section 2.4.
We filtered the left image of each stereo pair with a
disk filter of radius 2 (simulating an out of focus im-
age) and added white Gaussian noise with variance 2.
The right image was left unmodified. Then, we cor-
rected the stereo pair using our algorithm a number of
times, with the value of M ranging from 2 to 80. Fi-
nally, we ran the BP stereo matching method on the
corrected images. The number of bad pixels versus
the value of M is plotted in Figure 4 for the ten test
image pairs, together with the average error across the
ten image pairs.

From Figure 4, we can see that the amount of errors
is generally higher when the number of bands is very
low (2-6) or very high (50+). For all of the test images
the number of errors is steady and near minimum when
M is in the range 10 to 30. The average number of
errors is minimized when M is 20.

Furthermore, choosing M = 20 gives very close to
optimal results for all 10 test images.

We have done similar tests with other blur filters and
different levels of blurring, and in all cases the results
were similar to those shown in Figure 4 (i.e., the mini-
mum was at or near M=20, and the curves were flat in
a large range around the minimum). Therefore we use
M=20 in the rest of our tests.

3.2 Disparity map improvement for blurred
images

Here we compare the quality of depth maps obtained
using our proposed method relative to performing
stereo matching directly on the blurred images.

In each test, the right image was left unfiltered,
while the left image was blurred with either a disk filter
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Figure 3: Test images used in experiments (only left image of each pair is shown). In reading order: Tsukuba,
teddy, cones, art, laundry, moebius, reindeer, aloe, baby1, and rocks.

Figure 4: in disparity maps as a function of the number of frequency bands used

(simulating out-of-focus blur) or a linear motion blur
filter at 45 degrees to the x-axis. We tested out-of-
focus-blur with radii of 0, 1, 2 and 3 pixels and motion
blur with lengths of 2, 3 and 4 pixels. A larger radius
or length means the image is blurred more. A blur
radius of zero means the image is not blurred at all,
i.e., the filter is an impulse response and convolving
it with the image leaves the image unaltered. White
Gaussian noise with a variance of 2 was added to all
of the blurred images (which is typical of the amount
of noise found in the original images). Figure 5 shows
the Tsukuba image blurred with all of the filters tested,
to give the reader an idea of how severe the blurring is
in different tests.

Tables 1 through 4 show the percentage of er-

rors in the disparity maps obtained with different lev-
els of blurring, with and without the proposed cor-
rection. The second column of each table (images)
shows whether stereo matching was performed on ei-
ther the blurred left image and original right image (the
“blurred” case), or on the left-right pair obtained by
applying our proposed method (the “corrected” case).
Table 1 gives results for of-out-focus blur and the Be-
lief Propagation stereo method, Table 2 for of-out-
focus blur and the window stereo method, Table 3 for
motion blur and the Belief Propagation stereo method,
and Table 4 for motion blur and the window stereo
method.

From Tables 1 through 4, we can see there is a sub-
stantial reduction in the number of errors in the dispar-
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Radius Images Tsukuba Teddy Cones Art Laundry Moebius Reindeer Aloe Baby1 Rocks Average

0
blurred 2.0 14.8 9.7 6.8 13.2 7.9 5.9 2.8 1.6 3.8 6.8

corrected 2.2 12.2 5.0 7.3 13.4 6.1 3.7 2.9 1.5 3.7 5.8

1
blurred 3.3 16.6 12.9 8.9 13.0 8.0 8.0 3.9 1.7 4.2 8.1

corrected 2.6 12.6 5.5 8.1 11.9 6.6 5.2 3.4 1.5 3.5 6.1

2
blurred 6.4 28.1 28.4 13.2 18.6 12.4 15.3 8.4 6.2 7.0 14.4

corrected 3.9 15.5 6.5 9.5 11.5 7.7 7.0 4.3 1.7 4.6 7.2

2
blurred 11.0 39.6 55.3 26.8 33.1 26.5 24.5 32.1 25.8 16.3 29.1

corrected 6.0 24.9 15.6 14.0 15.8 11.7 16.2 7.7 2.6 6.6 12.2

Table 1: Percentage of errors in disparity maps with Belief Propagation stereo method, out-of focus blurring

Radius Images Tsukuba Teddy Cones Art Laundry Moebius Reindeer Aloe Baby1 Rocks Average

0
blurred 5.3 16.3 13.4 13.3 19.5 13.5 10.4 5.6 4.8 5.3 10.7

corrected 5.4 14.4 8.4 15.0 19.5 12.2 7.4 5.8 4.9 6.7 10.0

1
blurred 7.7 19.7 18.2 16.7 23.3 13.7 13.2 6.4 6.0 5.7 13.1

corrected 8.0 17.4 8.4 16.3 17.8 12.9 11.9 5.9 5.1 5.1 10.9

2
blurred 9.8 31.1 35.0 25.1 29.7 21.0 36.6 10.7 14.2 12.6 22.6

corrected 8.8 23.9 10.1 19.4 18.7 15.4 26.4 7.0 6.7 8.4 14.5

3
blurred 17.8 49.9 64.0 39.1 47.9 42.2 52.3 29.5 56.7 30.8 43.0

corrected 10.6 44.3 31.4 27.2 33.7 24.1 42.6 12.6 13.4 13.2 25.3

Table 2: Percentage of errors in disparity maps with window stereo method, out-of focus blurring

Radius Images Tsukuba Teddy Cones Art Laundry Moebius Reindeer Aloe Baby1 Rocks Average

2
blurred 2.7 16.2 12.1 8.0 13.0 7.7 7.7 3.5 1.7 4.2 7.7

corrected 2.6 12.5 5.3 8.1 12.2 5.5 5.4 3.0 1.4 3.6 6.0

3
blurred 3.0 18.4 15.6 9.0 14.6 8.5 9.6 4.6 1.9 5.4 9.1

corrected 2.6 13.1 5.9 8.1 10.8 6.0 5.6 3.6 1.6 4.3 6.2

4
blurred 3.6 21.1 18.3 10.4 15.3 9.2 11.0 5.8 3.1 5.8 10.3

corrected 3.0 14.5 6.4 8.5 10.9 7.1 6.4 4.1 1.6 4.1 6.7

Table 3: Percentage of errors in disparity maps with Belief Propagation stereo method, linear motion blur

Radius Images Tsukuba Teddy Cones Art Laundry Moebius Reindeer Aloe Baby1 Rocks Average

2
blurred 6.7 18.8 16.8 15.6 22.0 13.6 11.5 6.0 5.5 5.5 12.2

corrected 6.7 16.3 8.5 16.0 19.3 12.5 9.2 5.9 4.7 5.0 10.4

3
blurred 7.6 20.8 19.2 17.7 23.6 14.4 16.2 6.7 6.4 7.5 14.0

corrected 6.5 17.2 8.9 17.0 17.2 13.0 15.3 6.1 5.1 5.8 11.2

4
blurred 7.9 22.3 23.8 20.2 27.0 16.1 26.9 7.8 8.5 10.6 17.1

corrected 7.2 19.8 10.3 17.4 20.2 13.5 21.7 6.7 5.5 7.4 13.0

Table 4: Percentage of errors in disparity maps with window stereo method, linear motion blur
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Figure 5: Demonstration of blurring filters used in our tests on the Tsukuba images (a) Original left image
(b) Original right image, (c)-(g) Left image blurred with: (c) Out-of-focus blur, radius 1 (d) Out-of-focus blur,
radius 2 (e) Out-of-focus blur, radius 3 (f) motion blur, length 2 (g) motion blur, length 3 (h) motion blur, length
4. The blurring filter is illustrated in the top left corner of each image.

ity maps when the proposed correction is used, partic-
ularly when the amount of blurring in the left image is
high. For the case of out-of-focus blur with a radius
of 3 and the BP stereo method, the average number
of errors is reduced from 29.1% to 12.1% using our
proposed method. For all images, there is some im-
provement when the proposed correction is used if one
image is blurred.

Even when neither image is blurred (the out-of-
focus, zero radius case in Tables 1 and 2), there is
some improvement on average when applying the pro-
posed method. Using the Belief Propagation stereo
method the average amount of errors is reduced from

6.8% to 5.8%, and for the window stereo method the
average error is reduced from 10.7% to 10.0%, when
neither image is blurred at all. One possible reason for
this improvement is that through equation 13, noise is
filtered from both images (the effect is similar to us-
ing a Weiner filter to remove noise [Pra72]). Another
possible reason is that the original images may have
slightly different levels of sharpness that the proposed
method can correct.

Comparing Tables 1 to Table 3, and Table 2 to Ta-
ble 4, we can see that our correction method gives
larger gains for out-of-focus blurring than for motion
blur. This is because modifying the DCT coefficients
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Figure 6: Example of cones image pair before and after correction. (a) Blurred left image (b) Original right
image (c) Disparity map obtained from images a and b with Belief Propagation (d) Corrected left image (e)
Corrected right image (f) Disparity map obtained from corrected images with Belief Propagation.

can only correct for magnitude distortion, not phase
distortion [Mar94]. Since the out-of-focus blur filter is
symmetric, it is zero-phase, and therefore introduces
no phase distortion and can be accurately corrected
for in the DCT domain. A linear motion blur filter is
in general not symmetric, and hence introduces phase
distortion. Modifying the DCT coefficients can cor-
rect the magnitude distortion caused by motion blur,
but the corrected image will still suffer from phase dis-
tortion. Consequently, the proposed method provides
some improvement for motion blur but not as much as
it does for of-out-focus blur.

An example demonstrating the subjective visual
quality of the corrected images and resulting dispar-
ity maps is shown in Figure 6. The blurred left im-
age and original right image of the cones stereo pair
is shown, along with the result of correcting the image
pair with our method. The disparity maps obtained
based on the blurred pair and corrected pair are also
shown. Comparing (c) and (f) in Figure 6, we can see
that the proposed method greatly reduces the errors in
the disparity map, and produces more accurate depth
edges. We can also see that the corrected images, (d)

and (e), are perceptually closer in sharpness than the
blurred images, (a) and (b). Therefore, the proposed
method may also be useful in applications such as Free
Viewpoint TV [Tan06] and other multiview imaging
scenarios, for making the subjective quality of differ-
ent viewpoints more uniform.

3.3 Complexity

Take the dimensions of the original left and right im-
ages as WxH . Removing the non-overlapping ar-
eas requires operations. We need to take four DCT’s
(of both original and cropped images). There are
many fast algorithms for computing DCT’s, which
have complexity [FJ05], where N is the number of pix-
els in the image, N = W · H. The number of opera-
tions required for the energy calculations and coeffi-
cient scaling is linear with the number of pixels, and
therefore these steps have complexity. Finally two in-
verse DCT’s must be performed to generate the cor-
rected images in the spatial domain, which again have
complexity. Overall, our proposed method has com-
plexity, and the slowest steps are taking the DCT’s and
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inverse DCT’s of the images. Many fast algorithms, as
well as software and hardware implementations, have
been developed for performing the DCT and similar
transforms [FJ05].

We have implemented our proposed method in C
code, and the running time for the Tsukuba images is
62 ms on an Intel Core 2 E4400 2 GHz processer under
Windows XP. Therefore, the proposed method is fast
enough to be used in real-time systems at reasonable
frame rates.

4 Conclusion

In this paper we have proposed a pre-processing
method for correcting sharpness variations in stereo
image pairs. We modify the more blurred image
to match the sharpness of the less blurred image as
closely as possible, taking noise into account. The
DCT coefficients of the images are divided into a num-
ber of frequency bands, and the coefficients are scaled
so that the images have the same amount of signal en-
ergy in each band. Experimental results show that ap-
plying the proposed method before estimating dispar-
ity on a stereo image pair can significantly improve the
accuracy of the disparity map compared to performing
stereo matching directly on the blurred images.

5 Appendix

Here we provide a detailed derivation for the value of
the attenuation factor A given in equation 13. We
wish to find the value of A which will minimize
the difference between the desired scaled coefficients,
G · HI(u, v), and the noisy scaled coefficients. G ·
A(HI(u, v)+N(u, v)). The expected square error is:

ε = Eb(G ·HI(u, v)−G ·A(HI(u, v)+N(u, v)))2c
(15)

Fully expanding gives:

ε = 6E
[
G2HI(u, v)2

−2G2AHI(u, v)2

−2GA ·HI(u, v)N(u, v)
+G2A2HI(u, v)2

+2G2A2HI(u, v)N(u, v)
+G2A2N(u, v)2

]
(16)

Since the noise is zero mean and independent of the
signal, E [N(u, v)] = 0 and the third and fifth terms

in 16 are zero, so the equation reduces to:

ε = E
[
G2HI(u, v)2 − 2G2AHI(u, v)2

+G2A2HI(u, v)2 +G2A2N(u, v)2
]
(17)

To find the minimum, we take the derivative with
respect to A, and set it to zero:

dε
dA =

−2G2 · E
[
HI(u, v)2

]
+2G2A · E

[
HI(u, v)2

]
+2G2A · E

[
N(u, v)2

]
= 0

(18)

Solving for A yields:

A =
E
[
HI(u, v)2

]
E [HI(u, v)2] + E [N(u, v)2]

(19)

The expected value E
[
N(u, v)2

]
is simply the

noise variance. We can estimate the expected energy
of an individual signal coefficientHI(u, v)2, as the to-
tal signal energy in the band, calculated with equation
9, ), divided by the number of coefficients in the band
(Cij).

A =

En(HI)

Cij

En(HI)

Cij + σN 2

(20)

Rearranging gives the result of equation 13
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