Journal of Virtual Reality and Broadcasting, Volume 7(2010), no. 1

GPU-based Ray Tracing of Dynamic Scenes

Martin Reichl, Robert Diinger, Alexander Schiewe, Thomas Klemmer,
Markus Hartleb, Christopher Lux, and Bernd Frohlich *

*Faculty of Media
Bauhaus-Universitit Weimar
Bauhausstr. 11, D-99423 Weimar, Germany
email: martin.reichlQuni-weimar.de

Abstract

Interactive ray tracing of non-trivial scenes is just be-
coming feasible on single graphics processing units
(GPU). Recent work in this area focuses on building
effective acceleration structures, which work well un-
der the constraints of current GPUs. Most approaches
are targeted at static scenes and only allow naviga-
tion in the virtual scene. So far support for dynamic
scenes has not been considered for GPU implemen-
tations. We have developed a GPU-based ray tracing
system for dynamic scenes consisting of a set of indi-
vidual objects. Each object may independently move
around, but its geometry and topology are static.

Keywords: GPU, Dynamic Scenes, Computer
Graphics, Interactive Ray Tracing, Acceleration,
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1 Introduction

We use a two-level acceleration structure for this con-
strained scenario similar to the approach taken by
Wald et al. [WBSO03]. Instead of using Kd-trees for
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both levels, we organize the individual objects in a
bounding box hierarchy (BVH), which is built on top
of Kd-trees for the individual objects. On the CPU
the BVH is rebuilt and updated in GPU memory every
time the position of an object changes. Our imple-
mentation uses a single kernel on the GPU to handle
all ray generations, except the primary rays which are
handled by a separate rasterization pass. The imple-
mentation on the GPU requires particular attention to
limit the divergence of the code execution paths across
multiple rays. We use a ray stack to avoid branch-
ing into particular cases for the treatment of reflec-
tion, refraction and shadow rays. The GPU’s multi-
processors only provide a very limited amount of ex-
tremely fast on-chip memory, which is important for
the stack-based traversal of the BVH and the Kd-trees.
Our smart stack uses onchip memory as long as possi-
ble and overflows into the slower global memory only
when necessary.

Ray tracing is an important technology for virtual
environments since it greatly improves the visual qual-
ity and enhances depth perception. In virtual environ-
ments, we mostly deal with a set of individual objects,
which can be translated, rotated and otherwise ma-
nipulated. This paper reports on the experiences of
our GPU-based ray tracing system for such dynamic
scenes consisting of individual objects or parts. We an-
alyze the behavior of our implementation in detail and
discuss the advantages, disadvantages and limitations
of a two-level acceleration structure. We have also
compared the performance of our BVH/Kd-tree com-
bination to a single Kd-tree implementation, which
cannot be rebuilt on a frame-by-frame basis and thus
does not support dynamic objects. The results show
that the two-level hierarchy performs between 40 per-
cent and 105 percent as fast as the pure Kd-tree imple-
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Figure 1: Our work is motivated by assembly planning
and product evaluation applications. In these scenarios
the interactive manipulation of individual objects is an
important requirement.

mentation. While this is an encouraging result, it still
leaves room for improvement of the data structures and
traversal approaches for dynamic scenes.

2 RelatedWork

First approaches to utilize GPUs for accelerating
ray tracing were limited by the capabilities of the
early generations of programmable graphics proces-
sors. With the Ray Engine Carr et al. were
the first to implement a real-time ray tracing technique
augmented by the GPU. In their approach the GPU
was only used for ray-triangle intersections. The per-
formance of this approach was limited by the required
memory transports for geometry download and inter-
section results upload. At the same time Purcell et al.
simulated the use of the GPU as a stream
processor to enable the implementation of a complete
ray tracing algorithm on a GPU. This approach de-
composed the ray tracing algorithm into smaller sub-
tasks (i. e. ray generation, traversal, intersection tests,
shading) which were processed in multiple rendering
passes. A regular grid was chosen as the acceleration
structure due to simple traversal computations.

For static scenes the Kd-tree is one of the most effi-
cient acceleration structures [Hav00l], in particular if
its construction is based on a surface area heuristic
(SAH) to minimize traversal costs. Traver-
sal of such advanced hierarchical data structures re-

quires the use of a stack which is still difficult to ef-
ficiently implement on todays GPUs. Foley and Sug-
erman presented two techniques for stackless
Kd-tree traversal (kd-restart, kd-backtrack) which re-
quire a number of redundant traversal steps. To re-
duce this traversal overhead, Horn et al.
added a small fixed-size stack. Recently, Popov et al.
introduced a stackless, GPU-based Kd-tree
traversal algorithm, which requires significantly less
traversal steps than stack-based methods or kd-restart.
With the additional storage of links to adjacent nodes
called ropes a high amount of down-traversal steps are
avoided since traversal may start at a leaf node.

Besides Kd-trees, bounding volume hierarchies
(BVH) can be used as acceleration structures on the
GPU. Thrane and Simonsen presented a stack-
less BVH traversal algorithm, which can be efficiently
implemented on the GPU. Their approach outper-
formed stackless kd-restart and kd-backtrack traver-
sals on moderately sized scenes. Recently, Giinther
et al. presented a BVH-based packet traver-
sal algorithm using a shared stack. They were able to
achieve near real-time results for large static scenes.

Recent work on ray tracing of animated and interac-
tive scenes mostly focused on acceleration structures,
which can be quickly build or rebuild [WMGT07].
Wald and Havran showed how to rebuild a
BVH for the entire scene on a per-frame basis. Yoon
et al. presented a technique for locally re-
structuring parts of a BVH instead of rebuilding the
entire structure, which works well if only small por-
tions of the scene are manipulated. Other approaches
used nested or multi-level hierarchies where a toplevel
hierarchy maintains only movable scene objects while
an efficient acceleration structure is used as a low-level
hierarchy holding the object geometries. This allows
for manipulation of scene objects while avoiding un-
necessary reconstruction of acceleration structures for
the non-deformable scene objects. Lext and Akenine-
Moller showed how to use a grid as a top-
level hierarchy which allows very fast rebuilds. A sim-
ilar approach was taken by Wald et al. using
Kd-trees for both the top-level and low-level hierar-
chies. While all these techniques for dynamic or ani-
mated scenes focus on CPU implementations, we have
explored the use of multi-level hierarchies for dynamic
scenes in the context of GPU-based real-time ray trac-
ing.
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Figure 2: A two-level hierarchy consisting of a BVH
maintaining the top-level scene structure while static
scene geometries in the leaf nodes are organized in Kd-
trees.

3 Two-Level Hierarchy

Common virtual reality applications allow the interac-
tive manipulation of objects or parts of objects in the
scene. Most manipulations do not change the shape of
objects and in most cases only rigid body transforma-
tions are applied to individual objects. Our goal is to
support such scenarios. Assembly planning in the au-
tomotive industry is a typical example, which requires
the manipulation of individual car and engine parts. In
a typical scene graph-based scenario objects are orga-
nized in hierarchical structures to achieve hierarchical
transformations. In the following we will only con-
sider scenes consisting of a set of individual objects,
where each object may be associated with an affine
transformation. Each object is static with respect to its
mesh connectivity and geometry. Most scene graph hi-
erarchies can be flattened to create the required struc-
ture. This allows the use of efficient acceleration struc-
tures on the level of static scene objects while main-
taining the dynamic scene structure in a separate top-
level acceleration structure. This approach of using
multiple nested acceleration structures of potentially
different types is typically called multi-level hierarchy
(MLH) [LAMO1,WBSO03]]. In our implementation, we
use only a two-level hierarchy (TLH) of acceleration
structures, which also allows single-level instancing,
but does not support multi-level instancing schemes.

Using a two-level hierarchy allows to combine ac-
celeration structures offering different characteristics
with respect to their creation time. Choosing an accel-
eration structure, which allows for the most efficient
ray traversals at the cost of extended build time, is fa-
vorable for the static object geometries. The acceler-
ation structures for these objects remains unchanged
after the initial build process and therefore only needs
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Figure 3: Initial transformations are computed for all
static scene objects which results in more tightly fit-
ting bounding boxes in the object’s coordinate system.
Figure (a) shows the object orientation in global space
which is computed in a preprocess. Figure (b) shows
the built Kd-tree and AABB in object space. The re-
sulting Kd-tree OBB and the BVH AABB in global
space are shown in figure (c).

to be constructed once. This enables us to employ
algorithms generating traversal-cost optimized struc-
tures in a preprocess for each interactive scene object.
In contrast, due to user interaction with the scene, the
top-level structure needs to be potentially rebuild on a
frame-to-frame basis. Therefore it requires an acceler-
ation structure with very fast reconstruction or restruc-
turing times at the expense of being less optimized for
ray traversals.

For the GPU-implementation of the two-level hier-
archy we chose to combine a bounding volume hierar-
chy (BVH) of axis-aligned bounding boxes (AABBs)
used as the dynamic top-level hierarchy with Kd-trees
used for organizing the static object geometries (cf.
figure [2). Both structures are constructed utilizing a
surface area heuristic (SAH) cost estimation to min-
imize the costs for traversal and intersection tests.
The top-level BVH is reconstructed from scratch every
time the scene structure is changed through user input
or animation. On these events, we employ a method
for fast CPU-based BVH rebuilds based on the tech-
nique presented by Wald et al. [WBSQ7]. Note, that
the reconstruction is done entirely on the CPU.

In a pre-process we compute oriented bounding
boxes (OBB) for the individual scene-objects using
Gottschalk’s fitting technique [Man96] and assign an
initial transformation matrix for each object to place
it appropriately in the global coordinate system. The
Kdtrees for the individual scene objects are built in the
local coordinate system of each object. The BVH is
built in top-down order based on axis-aligned bound-
ing boxes around the OBBs of the individual objects
(cf. figure 3) on a frame-by-frame basis. Each leaf
node of the BVH holds a transformation matrix and a
reference to the contained Kd-tree. Thus instancing is
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directly supported which avoids unnecessary geome-
try replications.

The top-level BVH structure needs frequent updates
in GPU-side memory, whereas the static Kd-tree struc-
tures containing the actual scene geometries are up-
loaded only once. We chose a full binary BVH lay-
out where each inner node has exactly two descen-
dants. For a fixed scene size the BVH data structure
has a constant memory footprint. Thus the memory
has to be allocated only once on the GPU side avoiding
memory fragmentation and minimizing memory man-
agement during run-time. The following section will
describe details of our implementation.

4 Two-Level Hierarchy on the GPU

For the GPU implementation we chose to use
NVIDIA’s CUDA API [NVIO7] for directly accessing
the compute features of the NVIDIA G80+ family of
GPUs. This enables us to take advantage of particu-
lar hardware features which are not accessible through
common graphics APIs. This section introduces the
characteristics of the Compute Unified Device Archi-
tecture (CUDA) before describing our TLH GPU im-
plementation in detail. Data layout and algorithmic
details (e. g. traversal, ray generation, stacks) are pre-
sented as well as memory access optimizations intro-
duced by our approach.

4.1 G80+ Architecture & CUDA

Today’s GPUs may be viewed as highly parallel
streaming architectures. More precisely, they are
multi-processor/multi-alu machines. Each multipro-
cessor can be classified as a Concurrent Read, Concur-
rent Write Parallel Random Access Machine (CRCW
PRAM) [PGSSO7].

CUDA enables direct access to the compute capabil-
ities of G80+ GPUs without the requirement to express
algorithms in terms of graphic primitives such as trian-
gles or textures. Using CUDA general memory scat-
tering operations have finally become possible, while
they are still very limited with current high-level shad-
ing languages. Scattering allows writing to arbitrary
memory locations, and therefore enables more flexible
algorithm implementations and in particular the use of
stacks and other dynamic data structures. CUDA pro-
grams are expressed as so called kernels which are ex-
ecuted in chunks of threads that are running in paral-

lel. These chunks are called Warp{-] which again are
grouped into blocks running on individual multipro-
cessors. These blocks share all resources of a mul-
tiprocessor. However, the atomic scheduling unit re-
mains a warp which executes threads in SIMD fash-
ion.

The G80+ architecture exposes different types of
memory with highly different bandwidth and latency
characteristics. All multiprocessors share direct un-
cached access to the global device memory. While
this is suited for intra- and inter-processor communi-
cation, memory fetches suffer from a relatively high
latency. An alternative way to access global memory
is through the CUDA texture interfaces, which speeds
up recurring and spatially coherent fetches from global
memory regions by using an on-chip cache. In addi-
tion, there are constant and shared memory regions at-
tached to each multiprocessor. These memories ex-
hibit high bandwidth and very small access latencies.
Finally, threads have access to a set of dedicated regis-
ters. Each multiprocessor possesses only a limited set
of overall resources for constant, shared and register
memory. As a result the requirements of multiproces-
sor resources per kernel limits the amount of runnable
(active) threads per block.

4.2 Ray Tracing Kernel

We employ a single kernel for implementing the
complete ray tracing algorithm including acceleration
structure traversal, ray-triangle intersection, shading
and secondary ray generation. For each pixel a thread
is created which executes the ray tracing kernel. We
use a rasterization pass to generate the intersections
for the primary rays to accelerate the ray tracing sys-
tem. The results of this rendering pass are used by the
ray tracing kernel to compute secondary effects and
shading.

4.2.1 Data Layout

For GPU-ray tracing the geometry as well as the ac-
celeration structures are serialized and uploaded to the
GPU global memory. We employ the CUDA texture
interface to benefit from cached memory access. The
BVH and the Kd-tree structures are serialized in depth
first order as shown in figure ] Using this memory
layout for binary trees the first child of each inner node
is located right next to the parent requiring only a sin-

'On current GPUs the warp size is 32 threads.
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Figure 4: Depth-first left ordered binary tree serializa-
tion.

gle link per node pointing to the second child. As a
result, for any node fetched from the global memory
the first child is potentially placed in the cache. Spe-
cial handling of null pointers is not required since we
use a binary tree layout for the BVH as well as for the
Kd-tree (i. e. each inner node has exactly two child
nodes).

The Kd-tree leaf nodes store only references to in-
dividual triangles to prevent triangle replication. The
Kd-tree node layout strictly follows the 8 byte scheme
proposed by Wald [Wal04]. In contrast, a BVH node
needs to additionally store references to a transforma-
tion matrix and an axis-aligned bounding box requir-
ing 32 byte per node.

The CUDA-OpenGL interoperation layer provides
only limited support for shared data usage. Unfor-
tunately, the scene geometries need to be duplicated
to be available for the primary OpenGL rasteriza-
tion pass and for the actual CUDA-based ray trac-
ing. Furthermore, since the offscreen buffers which
holding the primary ray intersection results are up-
dated each frame, they need to be transferred from
dedicated OpenGL memory to CUDA-mapped mem-
ory each frame which is an unexpected bottleneck with
current drivers]

4.2.2 Primary Ray Generation

To take advantage of the rasterization power of cur-
rent GPUs we employ a rasterization pass to generate
the triangle index and intersection point for each pri-
mary ray. The scene is rendered using OpenGL using
a fragment program which writes out triangle indices,
interpolated barycentric coordinates and a Kd-tree ref-
erence. We also use the BVH structure to render the
scene objects in front-to-back order to take advantage
of hardware-supported early-z culling. The CUDA
ray tracing kernel reads back the per-pixel informa-
tion from the rasterization pass to reconstruct the exact

We measured an effective bandwidth of around 30GiB/s
which is at around 24% of the maximum bandwidth capabilities
of an NVIDIA GeForce GTX 275 GPU.

intersection point p. Since p is defined in the Kd-tree
coordinate system it is then transformed into the world
coordinate space.

4.2.3 Shading

After the reconstruction of the primary intersection
point the shading equation is applied to this point. This
implies fetching associated materials, normals and tex-
ture coordinates from global memory. As CUDA is
currently not supporting the use of indexed texture ob-
jects we use a texture atlas and extend the material
structures with a texture index. The texture coordi-
nates are on the fly transformed into the actual atlas
texture coordinates by using a texture description ta-
ble residing in on-chip constant memory.

4.2.4 Secondary Ray Traversal

Subsequently to primary intersection point shading
secondary rays are generated and traced through the
TLH. The SIMD GPU execution model leads to sets of
implicitly generated ray packets (warps) of secondary
rays, which are handled in parallel. Each thread in a
warp executes the same instructions at the same time,
since all the threads in a warp are executed on a sin-
gle multiprocessor in SIMD fashion. In case of con-
ditional branching the whole warp is executing all re-
quired executions paths by masking individual threads
as inactive. Thus it is particularly important to avoid
too many possible execution paths. We use a ray stack
in global memory to maximize the number of active
threads. Each generated ray and the corresponding
ray parameters are pushed onto the stack which is then
processed according to listing I} Thus the code is not
branching for the different ray types and cases for sec-
ondary rays. Instead all secondary rays basically fol-
low the same execution path which limits the number
of inactive threads per warp. Nevertheless, if no reflec-
tive or transparent material is hit these threads cannot
do meaningful work.

Listing 1: Secondary rays are processed using a ray
stack instead of branching into different cases for
shadow, reflection and refraction rays. The ray stack
limits code execution divergence.

while (!stack.empty()) { // secondary ray stack
Ray ray = stack.pop();
Result hit = traverseTLH (ray);
if (!hit) continue;

if (isTransparent(hit))
stack .push(refract(ray));
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if (isReflective (hit))
stack .push(reflect(ray));

Result shadow = traverseTLH (toLight(hit));
color += shade(ray.intensity , shadow, hit);

The secondary rays traverse through the TLH struc-
ture in the same way as it would be implemented on
the CPU. For each intersected BVH node intersec-
tions with the two child nodes are calculated and depth
sorted. Then the traversal descends into the BVH fol-
lowing the first hit child node (cf.[5p). In case of BVH
leaf nodes the ray is transformed to the coordinate sys-
tem associated with the referenced Kd-tree. Before
traversing the actual Kd-tree the axis-aligned bound-
ing box of the Kd-tree is intersected to avoid unneces-
sary traversals. After returning from the Kdtree traver-
sal, the remaining sub-trees with potential intersec-
tions closer to the ray origin than a potentially found
intersection point are processed.

4.3 Memory Access Optimization

We employ two techniques to reduce the cases where
we have to wait for data to be fetched from global
memory: At first, we store the geometry data in sep-
arate lines of a 2D texture to increase texture cache
utilization. But as others, we observed that cache hits
become more and more unlikely with subsequent ray
generations. The performance advantage of using the
small 16Kb texture cache is split among all uses such
as storing geometry data, acceleration structures as
well as materials thus it may be negligible in the end.

Scene BVH KD

avg  max  var avg max  var
BART robots 1.0 6 1.33 1.4 7 1.9
BART kitchen | 0.01 1 0.01 || 3.63 10 1.14
The chevy 0.72 5 1.1 0.22 5 0.37
Chess 0.27 2 0.39 || 1.53 6 1.02

Table 1: Actual maximum stack usage for the two
acceleration structures used in the approach. Data is
taken for all primary rays. The maximum allowed tree
depth for the Kd-tree is 20, the depth of the BVH is
loga(n) where n is the number of objects.

The second method for memory access optimization
is the use of a smart stack, which uses on-chip shared
memory as long as possible and overflows in global
memory if necessary. While a maximum stack size of
the height of the tree can be required, the average stack

utilization is significantly lower as can be seen in Ta-
ble [I] Therefore, Horn et al. [HSHHO7] introduced
a small, fixed-size stack called short-stack. In their
implementation, if the short-stack underflows they fall
back to a strategy called kd-restart, which restarts tree
traversal with a shortened ray. If the stack overflows,
they simply overwrite the oldest entry. We adapted the
concept of the short-stack to create a fast-access ver-
sion of the BVH and Kd-tree stacks which reside in
the on-chip shared memory of the multiprocessor. As
our kernel implementation allows for an active thread
count of 64 threads per block there are 256 bytes of
shared memory per thread available. This would allow
to implement for either a short BVH stack of 32 ele-
ments or a short Kd-tree stack of 21 elements. Since
both stacks are not used at the same time, we have
adapted the stacks to work in the same memory re-
gion. This is possible since the Kd-tree stack is al-
ways empty as a thread runs BVH traversal. In ad-
dition, updates of the BVH stack do not occur during
Kd-tree traversal. Figure [] shows the memory layout
and addressing scheme used. If the short stack would
grow beyond the memory region dedicated to a thread,
this thread uses a second memory region in the global
memory as a swap area for the oldest stack elements.
When reaching the size limit of the short stack, the old-
est element respectively the two oldest elements are
transferred to the swap area and this space in shared
memory is used for the new stack entry. Once the
shared memory stack runs empty, the youngest stack
element from the swap area is popped back to the
shared memory region. Note that if any thread of a
warp has to fall back to global memory, all threads in
the warp are punished with high memory latencies due
to the swapping operations to global memory. How-
ever, these cases are extremely rare. For the examples
in Table [I|they did not occur.

We also considered to put the ray stack for sec-
ondary ray handling into shared memory. As this
memory region is clearly limited in size, this approach
would constrain the memory dedicated to the smart
stack even more. Since secondary ray stack operations
occur considerably less often than traversal stack op-
erations the speedup of the smart ray stack was negli-
gible.

5 Results and Discussion

In this section we will present and discuss the results
of the conducted performance analysis to evaluate the
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Figure 5: Detailed schematic view of the TLH traver-
sal. Figure (a) Shows the top-level BVH within the
global coordinate system. During TLH traversal the
ray intersects both BVH child nodes therefore it has to
be transformed to both local Kd-tree coordinate sys-
tems. Figures (b) and (c) show the traversal of the Kd-
trees in their local coordinate space.

impact of the TLH approach compared to using a sin-
gle Kd-tree for the entire scene. The chosen test scenes
(cf. figure[7) exhibit different characteristics regarding
rigid object count, polygon count and the spatial distri-
bution of objects. Especially the BART scenes provide
different stress scenarios for ray tracing of dynamic
scenes like the “teapot in a stadium problem”, hierar-
chical animations and varying frame-to-frame coher-
ence. Additionally, the chevy scene contains multiple
objects with overlapping bounding volumes which re-
quires a large percentage of the rays to traverse more
than one object Kd-tree. The chess scene has been
chosen because of a uniform distribution of objects
which show no bounding volume overlaps as well as
nearly the same triangle count as the chevy scene.

The tests were conducted using a Intel Core2 Duo
2.4GHz workstation with 4GiB RAM and a NVIDIA
GeForce GTX 275 graphics board running CUDA 2.3
(driver version 190.38) under Windows XP. All tests
were conducted using an image resolution of 512x512
pixels.

5.1 Performance Results

Table [2] shows our performance measurements for the
test scenes under different ray recursion depth config-
urations. We also show the primary ray shading per-
formance to give an estimate of the baseline perfor-
mance without ray traversals. These numbers include
the OpenGL rasterization pass as well as the transfer
of the results to CUDA mapped memory and the inter-

upper part of the stack is stored in fast shared device memory:

Kd-tree stack
element

Kd-tree stack
element

oldest stack elements are stored in slow global device memory:
| |

Kd-tree stack
element

Figure 6: Per thread mixed BVH/Kd-tree stack lay-
out. Each BVH stack element takes 8 bytes of stack
memory for its corresponding node index and the ray
parameter for the nearest intersection point with the
AABB. Kd-tree stack elements need additional 4 bytes
to store the ray parameter for the exit intersection
point. The stack in the global memory will only be
used as a swap region for the oldest stack elements if
the maximum size of the shared memory is reached.
A ring buffer implementation allows to efficiently use
the freed space.

(a) BART robots

(c) Chevy

(d) Chess

Figure 7: Test scene overview. (a) 162 objects, 110K
triangles (b) 6 objects, 71K triangles (c) Chevy, 79 ob-
jects, 43K triangles (d) Chess, 34 objects, 46K trian-
gles
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section point reconstruction and shading performance
of the CUDA kernel. For our scenes the rasterization
approach is up to six times faster than tracing primary
rays, which is due to the relatively small number of
triangles (only up to 110k). As noted in section 4.2.1]
this approach is still limited by CUDA-OpenGL in-
ter operation constraints and surprisingly low device
memory transfer performance, which is expected to be
improved with newer CUDA and driver revisions.

The rebuild time for the BVH is significantly influ-
enced by the number of dynamic objects in the scene.
Our SAH-based implementation, which is similar to
Wald et al. [WBS07], exhibits O(nlog®n) runtime be-
havior and allows us to build a BVH for 1000 objects
in 9:8 ms. As the test scenes consist of considerably
less dynamic objects the BVH rebuild time is negligi-
ble to performance considerations. As we are employ-
ing a already published construction algorithm more
comprehensive performance data can be found in the
original publication.

The performance of the TLH approach turns out to
be an almost constant fraction of the performance of
the Kd-tree implementation for a specific scene. While
Wald et al. observed an overhead of 10 to 20% com-
paring an TLH to a static Kd-tree in a CPU environ-
ment [WBSO03]] we observe performance penalties of
10 to 60% for the TLH approach depending on scene
characteristics. Interestingly, the chevy model runs
only at 42% and the BART robots scene achieves 65%
of the Kd-tree performance while consisting of about
twice as much dynamic objects. The reason for the
limited peformance of the chevy model is the signifi-
cant number of overlapping bounding volumes of the
various car parts.

In case of overlapping bounding volumes the proba-
bility increases that more than one Kd-tree needs to be
traversed for finding the first intersection point of a ray.
Generally, two extreme cases can be observed: On the
one hand, without overlap the BVH is able to separate
two children and no traversal overhead is observed (as
evident in the BART kitchen scenario). On the other
hand, in case of complete overlap the BVH degener-
ates to a linear list whose children all need to be pro-
cessed. The average case between these two extrema
profits from the BVH early-out techniques as outlined
in section .2.4] The issue of overlapping bounding
volumes can be reduced by using oriented bounding
boxes. However, a complete avoidance is often not
possible.

The chevy model consists of densely arranged ob-

Scene Primary | Shadow | Reflect 5
Shading only only Bounces
+ Shadow
Kd 15.26 7.86 1.56
Robots 160.39
THL 11.43 5.63 1.01
Kd 15.21 16.92 3.36
Kitchen 163.49
THL 16.53 18.06 3.63
Kd 72.38 68.03 34.55
Chevy 277.72
THL 30.45 34.34 14.72
Kd 59.19 3542 10.53
Chess 303.30
THL 51.09 28.75 8.63

Table 2: Performance comparison for the different test
scenes using either the TLH or a single Kd-tree for the
entire scene. The results are measured in frames per
second for different depths of the ray tree. Primary
ray shading only involves the rasterization pass and a
single kernel pass for reconstructing and shading the
primary intersection point.

jects which results in many overlapping bounding vol-
umes and thus the lowest performance ratio compared
to other scenes consisting of even more dynamic ob-
jects. Figure[§]illustrates the amount of Kd-tree traver-
sals measured for the primary shadow rays compar-
ing the chevy model and the BART robots scene.
It is evident that the amount of rays traversing four
or more Kd-trees before finding the correct intersec-
tion is much higher for the chevy scene than for the
robots scene. The average number of Kd-tree traver-
sals for the chevy scene is 3:44 in contrast to 1:3 in the
robots scene, which clearly explains the lowest per-
formance ratio for the TLH approach compared to a
single Kdtree for the entire scene.

5.2 GPU Utilization

We found three primary factors influencing the perfor-
mance of our GPU ray tracing algorithm: the number
of memory accesses, the active GPU occupancy and
the code execution divergence.

We found the biggest influence on performance is
the large number of memory accesses needed for the
traversal of the TLH structure (e. g. bounding vol-
umes, transformation matrices) as well as the access
to the actual geometry data for intersection tests and
shading (e. g. vertices, normals, texture coordinates).
Due to the chosen serialized memory layout for binary
trees (cf. section[4.2.T)) access to the nodes of a BVH
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Figure 8: These images illustrate the amount of Kd-
tree traversals for the first shadow ray traversal for the
chevy scene and the BART robots scene. Blue colors
indicate up to three, green colors up to six, red col-
ors up to nine and white color more than nine Kd-tree
traversals per ray.

or a Kd-tree is more coherent than access to geome-
try data. This is the case since we chose a binary tree
structure for the BVH and the Kd-tree and store the
first child with the parent node. Thus the accelera-
tion structures make more efficient use of the texture
cache than the geometry data. An experiment selec-
tively disabling the texture cache interface confirmed
this assumption. Disabling the texture cache for the
acceleration structures resulted in a 20% decrease in
performance while disabling the texture cache for the
geometry data showed no noticeable effect. Thus there
is clearly potential for improving the memory layout
for the geometry data by optimizing it with respect to
the layout of the Kd-trees.

We analyzed the ratio of clock cycles spent for ac-
tual computations in comparison to waiting cycles.
We found that on average 70 to 75% of the overall
clock cycles account to memory access waiting cy-
cles clearly dominating the actual computation time
per thread. Typically, such waiting cycles can be hid-
den by the GPU scheduler by swapping blocked with
runnable warps. The amount of runnable warps de-
pends on the amount of active threads on a multipro-
cessor. As stated before, the number of active threads
on a multiprocessor is limited by the kernel’s require-
ments on multiprocessor resources (i. e. registers and
shared memory). The kernel of our TLH traversal ap-
proach requires 53 registers limiting the number of ac-
tive threads per block and multiprocessor to 128. This
results in only four active warps per multiprocessor.
Due to this fact, the memory access latencies can not
be effectively hidden and the multiprocessors have to
be stalled

The SIMD execution of all threads belonging to a
warp further reduces the GPU utilization since indi-
vidual threads may be following different code execu-
tion paths. While bad branching behavior is not a new
phenomenon on programmable GPUs [HSHHO7], the
problem will get even worse as growing warp sizes are
an expected way to raise computation power of future
GPUs. We analyzed the actual code execution diver-
genceE] of our TLH implementation using the NVIDIA
Visual Profiler [NVIO7]. We found that the divergence
is around 10% for the BART robots scene and around
5% for the chevy model using a ray recursion depth
of three. This indicates that TLH traversal using the
global ray stack does not introduce large divergences.
Sadly, the profiler tool does not provide any informa-
tion about how large the run-time penalties are for the
existing divergence numbers.

5.3 Scalability

Our approach rebuilds the top-level BVH on a frame-
to-frame basis, which clearly limits the number of dy-
namic objects in the scene. When only manipulat-
ing small portions of the scene it might not be nec-
essary to rebuild the entire BVH structure. Yoon et
al. [YCMO7] presented a technique to locally restruc-
ture parts of a BVH. Ize et al. [IWP0Q7] showed how to
asynchronously rebuild a BVH over multiple frames
while relying on refitting for the intermediate BVHs.
The use of a parallel build algorithm may increase the
number of dynamic objects even further.

Since the BVH and the Kd-trees are binary trees,
doubling the number of scene objects and triangles re-
sults in only one additional traversal step. While this
behavior is quite acceptable, scalability is additionally
limited by the size of the fast on-chip memory for the
stack usage and potentially also less coherent access to
tree nodes and geometry data.

Another problem are large scene objects whose
bounding volumes are very frequently intersected by
smaller objects. The BART kitchen and robots scenes
are an example for such scenarios. They contain
large background objects which contain the smaller
dynamic objects. This typically leads to unnecessary
multiple decents into the Kd-tree hierarchies. This
problem can be solved by subdividing the large scene
objects into smaller parts which are sorted into the
toplevel hierarchy. Even if this does not completely

3Defined as the relation of the number of divergent branches
divided by the number of branches.
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remove the intersection of bounding volumes it should
result in significantly less unnecessary decents at the
cost of more top-level objects.

During BVH construction we split the set of objects
until every leaf contains exactly one object. One ben-
efit of using a SAH-based tree construction is that ob-
ject subdivision is canceled if a subdivision would not
improve the estimated intersection cost. Ignoring this
decision criterion may possibly reduce the BVH qual-
ity. On the other hand, allowing for more than one
Kd-tree being assigned to a leaf node would require
each ray to iterate through a list and result in a more
complicated data layout. Along with this, one more
point of possible code execution divergence would be
created due to the necessary loop over list elements.
Nevertheless it is hard to predict the impact of this de-
sign decision.

6 Conclusion and Future Work

We have reported on the design and implementation of
a two-level acceleration structure for ray tracing dy-
namic scenes on the GPU.We used a bounding volume
hierarchy for the top level to organize the bounding
boxes of the dynamic objects and encapsulated each
object in a Kd-tree. The results indicate that our ap-
proach is feasible for a GPU implementation and that
the performance may reach up to the performance of
a single Kd-tree implementation for the entire scene.
The BVH can be very quickly build, but performance
may be reduced if there is much overlap between the
bounding boxes of the individual objects in the scene.
Our approach is applicable for specific virtual reality
applications such as assembly planning or rigid body
physics, which do not require deformable objects and
vertex animations.

On desktop systems users alternate between view
point manipulation and object manipulation since both
cannot be controlled at the same time. During view
point manipulation, a single Kd-tree for the entire
scene seems most appropriate, but also view point co-
herence should be exploited. During object manipu-
lation, often only small parts of the scene change and
thus efficient update techniques for a global accelera-
tion structure would be required. At the same time,
object manipulation may change only a small sub-
set of the light exchange paths in the scene. Kurz et
al. [KLSFOS] have recently shown an approach which
makes use of this fact by storing ray paths and only up-
dating those which change. We should combine such

an approach with our two-level hierarchy to make use
of frame-to-frame coherence.

Today there are more and more CPUs and CPU
cores in combination with two, three or even more
graphics cards build into a single machine. The chal-
lenge is to split the ray tracing algorithm into parts
such that these abundant CPU and GPU resources are
utilized in a balanced and parallel way. The increased
bandwidth between CPUs and GPUs as well as ap-
proaches to place both processor types on a single die
make such approaches feasible and efficient. Never-
theless, appropriate data structures for handling large
dynamic scenes on such systems still need to be devel-
oped.
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