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Abstract

There is a growing interest in simulating natural phe-
nomena in computer graphics applications. Animating
natural scenes in real time is one of the most challeng-
ing problems due to the inherent complexity of their
structure, formed by millions of geometric entities,
and the interactions that happen within. An example
of natural scenario that is needed for games or simula-
tion programs are forests. Forests are difficult to ren-
der because the huge amount of geometric entities and
the large amount of detail to be represented. Moreover,
the interactions between the objects (grass, leaves) and
external forces such as wind are complex to model. In
this paper we concentrate in the rendering of falling
leaves at low cost. We present a technique that ex-
ploits graphics hardware in order to render thousands
of leaves with different falling paths in real time and
low memory requirements.
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Time Rendering, Hardware Accelerated Rendering.
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1 Introduction

Natural phenomena are usually very complex to sim-
ulate due to the high complexity of both the geome-
try and the interactions present in nature. Rendering
realistic forests is a hard problem that is challenged
both by the huge number of present polygons and the
interaction between wind and trees or grass. Certain
falling objects, such as leaves, are difficult to simulate
due to the high complexity of its movement, influenced
both by gravity and the hydrodynamic effects such as
drag, lift, vortex shedding, and so on, caused by the
surrounding air. Although very interesting approaches
do simulate the behaviour of light weight objects such
as soap bubbles and feathers have been developed, to
the authors’ knowledge, there is currently no system
that renders multiple falling leaves in real time. In
this paper we present a rendering system that is able to
cope with thousands of falling leaves at real time each
one performing an apparently different falling path. In
contrast to other approaches, our method concentrates
on efficient rendering from precomputed path informa-
tion and we show how to effectively reuse path infor-
mation in order to obtain per leaf different trajectories
at real time and with low memory requirements. Our
contributions are:

• A tool that simulates the falling of leaves from
precomputed information stored in textures.

• A simple method for transforming incoming in-
formation in order to produce different paths for
each leaf.

• A strategy of path reuse that allows for the con-
struction of potentially indefinite long paths from
the initial one.
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We have implemented three different versions of our
algorithm, with different load balanced from vertex to
fragment shader:

1. Complete rendering in the vertex shader, with the
program computing the current vertex position
using textures.

2. Position computation per leaf in the fragment
shader and, in a second pass, the vertex shader
determines the position of the vertices accessing
the information generated in the previous pass.

3. Position computation per leaf vertex in the frag-
ment shader, and modification of a vertex buffer
(render-to-vertex-buffer) that is rendered in the
next step.

The details of implementation of the different strate-
gies are developed in Section 6 where time compar-
isons are also shown.
The rest of the paper is organized as follows: First,
we review related work. In Section 3, we present an
overview of our rendering tool and the path construc-
tion process. Section 4 shows how we perform path
modification and reuse in order to make differently
looking and long trajectories from the same data. Sec-
tion 5 deals with different acceleration strategies we
used. Section 6 compares the efficiency of the differ-
ent implementations. Finally, Section 7 discusses the
results and concludes our paper pointing to some lines
for future research.

2 Related Work

There is a continuous demand for increasingly realistic
visual simulations of complex scenes. Dynamic natu-
ral scenes are essential for some applications such as
simulators or games. A common example are forests
due to its inherently huge amount of polygons needed
to represent them, and the highly complex interactions
that intervene in animation. There has been an in-
creasing interest in animating trees or grass, but there
has been little work simulating light weight falling ob-
jects such as leaves or paper. Most of the papers focus
on plant representation and interactive rendering, and
only a few papers deal with the problem of plant ani-
mation, and almost no paper focuses on falling leaves.

2.1 Interactive rendering

Bradley has proposed an efficient data structure, a ran-
dom binary tree, to create, render, and animate trees
in real time [Bra04]. Color of leaves is progressively
modified in order to simulate season change and are
removed when they achieve a certain amount of color
change. Braitmaier et al. pursue the same objec-
tive [BDE04] and focus especially in selecting pig-
ments during the seasons that are coherent with bio-
chemical reactions. Deussen et al. [DCSD02] use
small sets of point and line primitives to represent
complex polygonal plant models and forests at inter-
active frame rates. Franzke and Deussen present a
method to efficient rendering plant leaves and other
translucent, highly textured elements by adapting ren-
dering methods for translucent materials in combina-
tion with a set of predefined textures [FO03].

Jakulin focuses on fast rendering of trees by using a
mixed representation: polygon meshes for trunks and
big branches, and a set of alpha blended slices that
represent the twigs and leaves. They use the limited
human perception of parallax effects to simplify the
slices needed to render [Jak00]. Decaudin and Neyret
render dense forests in real time avoiding the common
problems of parallax artifacts [DN04]. They assume
the forests are dense enough to be represented by a vol-
umetric texture and develop an aperiodic tiling strat-
egy that avoids interpolation artifacts at tiles borders
and generates non-repetitive forests. A recent paper by
Rebollo et al. ([RGR+07]) also focuses on fast render-
ing of tree leaves but without animation.

2.2 Plant motion

There have been some contributions regarding plant
or grass motion, but without focusing on rendering
falling leaves, we present here the ones more related
to our work. Wejchert and Haumann [WH91] devel-
oped an aerodynamic model for simulating the motion
objects in fluid flows. In particular they simulate the
falling of leaves from trees. They use a simplifica-
tion of Navier-Stokes equations assuming the fluids
are inviscid, irrotational, and uncompressible. How-
ever, they do not deal with the problem of real time
rendering of leaves. A recent approach deals with au-
tumn scenaries. It renders leaves and simulates the ag-
ing process, and it is similar to ours in the sense that
the falling path is not built based on physical simula-
tion, rather, the authors use certain patterns to simulate
the behaviour of leaves falling [DGAJ06].
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Ota et al. [OTF+04] simulate the motion of
branches and leaves swaying in a wind field by using
noise functions. Again, leaves do not fall but stay at-
tached to the trees and consequently the movements
are limited. Reeves and Blau [RB85] proposed an ap-
proach based on a particle modeling system that made
the particles evolve in a 2D space with the effect of
gusts of wind with random local variations of inten-
sity. Our system is similar to the latter in the sense
that our precomputed information is used by applying
pseudo random variations, constant for each leaf, thus
resulting in different paths created from the same ini-
tial data.

Wei et al. [WZF+03] present an approach that is
similar to ours in objectives, because they render soap
bubbles or a feather, but from a simulation point of
view. This limits both the number of elements that can
be simulated and the extension of the geometry where
they can be placed. They model the wind field by using
a Lattice Boltzmann Model, as it is easy to compute
and parallelize. Finally, Shinya and Fournier [SF92]
animate trees and grass by complex flow fields by
modeling the wind field in a Fourier space and then
converting to a time-varying force field.

3 Rendering leaves

In this Section we give an overview on the tasks car-
ried out by our rendering tool.

3.1 Overview

Figure 1 depicts the system. As explained later in this
paper, paths are precomputed using Maya and stored
as textures. The renderer takes care of managing the
list of falling leaves that are sent to the graphics pro-
cessor and the shaders (sketched as OpenGL) modify
the input paths in a pseudo-random manner to gener-
ate differently looking paths for each leaf. Therefore,
static and dynamic geometry is processed with differ-
ent shaders.
In order to design a practical system for real time ren-
dering of falling leaves in real time, three conditions
must be satisfied:

• Paths must be visually pleasing and natural.

• Each leaf must fall in a different way.

• Computational and memory costs per leaf must
be low.

The first objective is tailored to ensure realism. De-
spite the huge complexity of natural scenes, our eyes
are used to them, and therefore, if leaves perform
strange moves in their falling trajectory, we would note
it rapidly. This will be achieved by using a physically
based simulator that computes a realistic falling path
of a light-weight object under the influence of forces
such as gravity, vortex, and wind.

The second objective must be fulfilled in the pres-
ence of a set of leaves, in order to obtain plausible an-
imation: if many leaves are falling, it is important to
avoid visible patterns in their moves, because it would
make the scene look unnatural. In order to reduce
memory requirements and computation cost, we will
use the same path for all leaves. Despite that, we make
it appear different for each leaf by performing pseudo
random modifications to the path in real time.

The third one is important because it imposes re-
strictions on the rendering tool, if we want a system
to scale well with the number of leaves, the position
computation must have low cost. This can be fulfilled
by storing the trajectory information in a texture that
is used to modify leaf position. One of our imple-
mentations directly reads this information in the ver-
tex shader using the so-called Vertex Texture Fetch ex-
tension [GFG04], available in modern NVidia graph-
ics cards (and compatible with the standard OpenGL
Shading Language) in order to compute the actual po-
sition and orientation of each leaf in the vertex shader.
The other, more efficient ones, read this path at frag-
ment shader level. Then, the new position is com-
puted, and an extra pass effectively renders the leaves
onto their corresponding positions.

Our algorithm not only reads the input file and
transform vertices according to it, but also performs
stochastic modifications on the transformations as a
function of the initial position of the leaf. This per-
mits the simulation of differently looking paths for
each leaf. From now on, we refer to the program that
computes the leaf position as the shader. Therefore,
our explanations will be valid for the three different
implementations we did.

Initially, a simple path is calculated and stored in a
texture. We could use more than one path, and reduce
the arithmetic computations in the shader, although
this results in small gain in the experiments we car-
ried out. For each leaf, the shader updates the vertex
position and orientation according to the moment t of
the animation using the data of the path. Thus, each
leaf does fall according to the selected path in a natu-
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Figure 1: Overview of the rendering system.

rally looking fashion. Next, we explain the path con-
struction process, the contents of the texture path, and
overview the algorithm of leaf transformation. Sec-
tion 4 deals on reusing data to produce different tra-
jectories for each leaf.

3.2 Path construction

There are two possible different methods to construct
the initial path we need for our rendering tool: i) Cap-
turing the real information from nature, or ii) Simu-
lating the behavior of a leaf using a physically-based
algorithm.
Our initial intention was to acquire the 3D data of a
falling leaf and use it for rendering. Unfortunately, the
data of leaves in movement is very difficult to acquire
due to many reasons, mainly: their movement is fast,
thus making it difficult for an affordable camera to cor-
rectly (i.e. without blurring artifacts) record the path,
and second, it is not possible to add 3D markers for ac-
quisition systems because they are too heavy to attach
them to a leaf (a relatively large leaf of approximately
10 × 15 centimeters weighs 4 to 6 grams). Moreover,
in order to capture a sufficiently long path, we would
need a set of cameras covering a volume of 4 or 5 cubic
meters, which also implies difficulties in the set up.

A different approach could be the simulation of
falling leaves using a physically based system. This
poses some difficulties too because Navier-Stokes

equations are difficult to deal with. Some simpli-
fications such as the systems presented by Wejchert
and Haumann [WH91] or Wei et al. [WZF+03], have
been developed. However, although the falling leaves
behavior has not been categorized, for planar discs,
some research has been carried out. In Field et
al. [FKMN97] the dynamics of falling planar discs
were analyzed, and the authors concluded that the tra-
jectory is chaotic. Leaves have a much more com-
plex geometry than planar discs, which makes their
behavior difficult to analyze. Fortunately, there are
other commercial systems that simulate the behavior
of objects under the influence of dynamic forces such
as Maya. Although this approach is not ideal because
it is not easy to model a complex object as a leaf (the
trajectory will be influenced by its microgeometry and
the distribution of mass across the leaf), and simpler
objects will have only similar behavior, it is probably
the most practical solution.

On the other hand, Maya provides a set of dynamic
forces operators that can be combined in order to de-
fine a relatively realistic falling trajectory for a planar
object. In our case, we have built a set of falling paths
by rendering a planar object under the effect of several
forces (gravity, wind, and so on), and recovered the in-
formation on positions and orientations of the falling
object to use them as a trajectory. We modeled a set of
scenes with several dynamic operators affecting part
of the path until getting a plausible falling trajetory.
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Our paths consist of a set of up to 200 positions (with
the corresponding orientation information at each po-
sition). As we will see later, these resulting paths are
further processed before the use in our rendering tool
in order to extract extra information that will help us
to render a per-leaf different path with no limit in its
length. This extra information is added at the end of
the texture. This way all the information needed for
the rendering process that will be used by the vertex
shader is stored in the same texture (actually we use a
texture for positions and another one for orientations).

Note that, independently of the acquisition method,
if we are able to obtain the aforementioned informa-
tion, that is, positions and orientations, we can plug it
into our system.

3.3 Path information

Our system basically performs a rendering for each
leaf based on path information that is stored in a tex-
ture. For each leaf that falls, the same algorithm with
the data of the corresponding leaf is executed.
As we have already explained, we start with the pre-
computed data of a falling leaf and provide it to the
shader in the form of a texture. Concretely, the trajec-
tory information is stored in a couple of 1D textures,
each containing a set of RGB values that encode posi-
tion (x, y, z) and rotation (Rx,Ry, Rz) respectively,
at each moment t. Given an initial position of a leaf
(x0, y0, z0), subsequent positions may be computed as
(x0 + x, y0 + y, z0 + z). Rotations are computed the
same way. In order to make the encoding easy, the
initial position of the path is (0, 0, 0), and subsequent
positions encode displacements, therefore, the value of
y component will be negative for the rest of the posi-
tions. On their hand, orientations encode the real ori-
entation of the falling object. The relevant information
our shader receives from the CPU is:

Number of frames of the path: Used to determine if
the provided path has been consumed and we
must jump to another reused position (see Sec-
tion 4.2).

Current time: Moment of the animation.

Total time: Total duration of the path.

Object center: Initial position of the leaf.

Path information: Two 1D textures which contain
positions and orientations respectively.

The shader also receives other information such as the
face normal. Each frame, the shader gets the corre-
sponding path displacements by accessing the corre-
sponding position (t, as the initial moment is 0) of
the texture path. This simple encoding, and the fact
that the same texture is shared among all the leaves at
shader level, allows us to render thousands of leaves
in real time, because we minimize texture information
change between the CPU and the GPU. Having a dif-
ferent texture per leaf would yield to texture changes
at some point. In Section 4.2 we show how to use the
same path in order to create different trajectories, and
how to reuse the same path when the initial y position
of the leaf is higher than the represented position in the
path.

3.4 Overview

At rendering time, for each leaf, a shader computes the
new position and orientation using the current time t.
It performs the following steps:

1. Look for the initial frame fi (different per leaf)

2. Seek current position in path (fi + ft, assuming
that ft gives the number of frames passed in time
t)

3. Calculate actual position and orientation

In step 2, if we have a falling path larger than the
one stored in our texture, when we arrive at the end,
we jump to a different position of the path that pre-
serves continuity, as explained in Section 4.2. Once
we know the correct position and orientation, step 3
performs the corresponding geometric transforms and
ensures the initial and final parts of the path are soft,
as explained in the following subsection.

3.5 Starting and ending points

As we have mentioned, the information provided by
our texture path consists in a fixed set of positions and
orientations for a set of defined time moments. Ide-
ally, a different path should be constructed for each
leaf according to its initial position, orientation, and its
real geometry. This way, everything could be precom-
puted, that is, the shader should only replace the initial
position of the element by the position stored in a tex-
ture. Unfortunately, for large amounts of leaves, this
becomes impractical due to the huge demand of tex-
ture memory and, moreover, the limitation in number
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of texture units would turn rendering cost into band-
width limited because there would be a continuous
necessity of texture change between CPU and GPU.
Thus, we will use the same path for all the leaves (al-
though we could code some paths in a larger texture
and perform a similar treatment).

In our application, a path is a set of fixed posi-
tions and orientations. Being this path common to all
leaves, and being the initial positions of leaves even-
tually different, it is compulsory to analyze the initial
positions of leaves in order to make coherent the ini-
tial orientations of leaves in our model, that depend on
the model of the tree, and the fixed initial orientation
of our falling path. Note that the position is unimpor-
tant because we encode the initial position of the path
as (0, 0, 0) displacement. As in most cases the orien-
tations will not match, we have to find a simple and
efficient way to make the orientation change softly.
Therefore, a first adaptation movement is required.

Our shader receives, among other parameters, a pa-
rameter that indicates the moment t of the animation.
Initially, when t is zero, we must take the first position
of the texture as the information for leaf rendering. In
order to make a soft adjustment between the initial po-
sition of the leaf and the one of the path, at the initial
frames (that is, we have a y displacement smaller than
a certain threshold) the shader makes an interpolation
between the initial position of the leaf and the first po-
sition of the path (by rotating over the center of the
leaf). As the leaf moves only slightly in Y direction
for each frame, the effect is soft (see Figure 2 left).
Rotations are implemented using quaternions.

The same case happens when the leaf arrives to the
ground. If the ground was covered by grass, nothing
would be noted, but for a planar ground, if leaves re-
main as in the last step of the path, some of them could
not lie on the floor. Note that it is not guaranteed that
each leaf will consume all the path because they start
from different heights. To solve it, when the leaf is
close to the ground, we perform the same strategy than
for the initial moments of the falling path, that is, we
interpolate the last position of the leaf before arriving
to the ground with a resting position that aligns the
normal with the normal of the ground. We can see
the different positions a leaf takes when falling to the
ground in Figure 2 (right).

Figure 2: Several superposed images of a support
polygon of a leaf (marked in red) in their initial adap-
tation to the path (left) and the final correction to make
it parallel to the ground (right).

4 Path modification

Up to now we have only presented the construction
and rendering of a single path. However, if we want
our forest to look realistic, each leaf should fall in a
different manner. A simple path of 200 positions re-
quires 1.2 Kb for the positions and orientations. If we
want to render up to ten thousand leaves, each one with
a different path, the storage requirements grow up to
12 Mb. For larger paths (such as for taller trees), the
size of textures would grow. Therefore, what we do is
to use a single path that will be dynamically modified
for each leaf to simulate plausible variations per leaf.
This is implemented by adding two improvements to
our rendering tool: path variation and path reuse.

4.1 Different falling trajectories

As our objective is to reduce texture memory con-
sumption and rendering cost, we will use the same tex-
ture path for each leaf. This makes the memory cost
independent on the number of leaves that fall. How-
ever, if we do not apply any transformation, although
not all leaves start falling at the same time, it will be
easy to see patterns when lots of leaves are on their
way down. Updating the texture for each falling leaf
is not an option because it would penalize efficiency.
Consequently, the per leaf changes that we apply must
be done at shader level.

In order to use the same base path to create different
trajectories, we have applied several modifications at
different levels:

• Pseudo-random rotation of the resulting path
around Y axis.
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• Pseudo-random scale of X and Y displacements.

• Modification of the starting point.

When we want to modify the falling path we have to
take into account that many leaves falling at the same
time will be seen from the same viewpoint. Therefore,
symmetries in paths will be difficult to notice if they
do not happen parallel to the viewing plane. We take
advantage of this fact and modify the resulting data by
rotating the resulting position around the Y axis.

In order to perform a deterministic change to the
path, we use a pseudo-random modification that de-
pends on the initial position of the leaf, which is con-
stant and different for each one. Thus, we rotate the
resulting position a pseudo-random angle Y , com-
puted as follows: permAngle = mod(center obj.x∗
center obj.y ∗ center obj.z ∗ 37., 360.). The prod-
uct has been chosen empirically. This pseudo-random
number is precomputed and passed as the fourth coor-
dinate of the rotation texture.

Although the results at this point may be accept-
able, if the path has some salient feature, that is, some
sudden acceleration or rotation, or any other particu-
larity, this may produce a visually recognizable pat-
tern. Thus, we add a couple of modifications more:
displacement scale and initial point variation.

Although it is not possible to produce an arbitrar-
ily large displacement scale, because it would pro-
duce unnatural moves, a small, again pseudo-random
modification is feasible. The values of X and Z
are then modified by a scaling factor, computed as:
scale x = mod(center obj.z ∗ center obj.y, 3.) and
scale z = mod(center obj.x ∗ center obj.y, 3.) re-
spectively. This results in a non uniform distribution
of the leaves at a maximum fixed distance of the center
of the tree caused by the falling path (whose displace-
ments did not vary in module up to this change). All
these modifications result in many differently looking
visually pleasing paths. Figure 3 shows several dif-
ferent paths computed by our algorithm and Figure 4
shows the results in a scene.

4.2 Path reuse

Our texture path information does not depend on the
actual geometry of the scene, in the sense that we
build paths of a fixed length (height), and the result-
ing trajectories might be larger if the starting points of
leaves are high enough. However, we solve this po-
tential problem by reusing the falling path in a way

Figure 3: Different variations of the initial path.

Figure 5: Leaves rendered at different moments in a
falling path. Each color indicates a different path us-
age, pink leaves are on the floor.

inspired by the Video Textures [SSSE00]. Concretely,
once the texture path is consumed, we jump to a dif-
ferent position of the same texture by preserving con-
tinuity. Thus, we precompute a set of continuity points
in the path that preserve displacement continuity: the
positions or orientations must not match, but the incre-
ments in translations (speed) must be similar in order
to preserve continuous animation.

The computation of new positions once we have
consumed the original path is quite simple. They are
computed using the last position of the animation and
the displacement increment between the entry point
and its previous point in the texture: path[lastPos] +
path[contPointPos] + path[contPointPos − 1].
This information is also encoded in the same texture,
just after the information of the path. The texture will
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Figure 4: Multiple paths rendered at the same time. Note the different appearance of all of them.

contain then the points of the path and the continu-
ity information (that simply consists in a value that
indicates the following point). Then, when a falling
leaf reaches the end of the path and has not arrived to
ground, the shader computes the next correct position
in the path according to the information provided by
the texture. If required, changes to the interpretation of
the following positions (different displacements) could
be added and encoded as the continuity information
in the same style than the ones performed to modify
paths and therefore we could have a potentially indef-
inite path with multiple variations. Different stages of
these paths are shown in Figure 5 as different colors
(pink leaves lie on the floor).

Apart from this information, we add another mod-
ification to the vertex shader. In the same spirit than
the continuity points, we compute a set of starting
points among which the initial position (frame0) is
pseudo randomly chosen (OpenGL specification of
the shading language provides a noise function but it
is not currently implemented in most graphics cards)
using the following formula: mod((centre obj.y ∗
centre obj.x ∗ 37.), f loat(MAX I − 1)) where
MAX I is the number of initial frames of the anima-
tion. These starting points are chosen among the ones
with slow speed and orientation roughly parallel to the
ground, in order to ensure the soft continuation of the
movement of the leaf. Therefore, each path starts in
one of the set of precomputed points, making thus the
final trajectories of the leaves quite different.

5 Optimizations

Our implementation includes optimizations such as
vertex buffer objects lists for static geometry, frustum
culling, and occlusion culling. However there is a bot-
tleneck that raises when many leaves are continuously
thrown during a walkthrough. If we implement the al-
gorithm as is, while rendering a long walkthrough the
framerate decays due to the increasing cost incurred
in the shaders. As all thrown leaves are processed
by the same shader even if they already are on the
floor. The processing cost increases because the ac-
cesses to texture are determined by the current frame.
When the computed position is under the floor, then
the shader program looks for the first position that re-
sults in the leaf lying on the floor. This requires a
binary search with several texture accesses, and tex-
ture access at vertex shader level is not optimized as in
fragment shaders.

In order to reduce the impact of processing, we have
implemented two optimizations:

• Leaf occlusion determination and skipping: Dur-
ing the rendering process, leaves are queried for
occlusion determination and, when a leaf is not
visible, we skip the rendering for 2 to 4 frames.
In the results shown, only half of the leaves are
tested each frame, and if they are not visible, we
skip three frames.

• Leaf elimination: When we determine a leaf has
been falling for a while, we compute its real po-
sition in the CPU and, if it is already on the floor,
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we update its position, put it into the list of static
geometry, and remove it from the list of falling
leaves.

The first optimization allows us to reduce the ren-
dering cost, as in most situations, not all falling leaves
will be visible (they may be occluded by the trunk or
branches, other leaves, or out of the frustum). In or-
der not to overload the CPU, we perform the occlusion
queries only on sets of leaves that change each frame.
We found a good compromise was to test on one third
of the falling leaves each frame and to skip the render-
ing of the leaves during 3 frames. Occlusion detection
returns true if at least three pixels are set as visible. We
will show in the following section how these optimiza-
tions improve the rendering process.

To solve the second problem (the leaves that are
on the ground still incur in a cost penalty), we have
implemented a simple solution that consists in selec-
tively detecting and removing the leaves that are on
the ground from the list of leaves that are treated by
the shader. At each frame, the CPU selects a subset of
leaves that started to fall long enough to have arrived to
the ground (in our case, two seconds since they started
falling is usually enough). For those leaves, the cor-
rect position is computed on the CPU, and if they lie
on the floor, their position is updated, and the leaf is
removed from the list of falling leaves. This step is not
too costly, as our experiments show that for one thou-
sand falling leaves, 5 to 13 leaves need to be erased
at each frame. Then, the number of leaves tested per
frame can be reduced to 10 or 20 and we start with the
leaves that were thrown first. This allows us to keep
the frame rate roughly constant for long exploration
paths and thousands of falling leaves.

6 Implementation

We have implemented three versions of our algorithm:

• A vertex-based method.

• A fragment-based method.

• A render-to-vertex buffer method.

The first one is the simplest, but it is not the optimal
version for most graphics cards. The main problem
is that vertex texture access is either not available in
old ATI graphics cards, or it is relatively slow even
in modern graphics cards such as the NVIDIA’s 6 and

7 series. The implementation of the vertex method is
straightforward. The second and third approaches re-
quire two rendering passes, however, they are more ef-
ficient than the vertex-based approach. The fragment
and render to vertex buffer methods are not so simple
and we provide now some details.

6.1 Fragment-based method

In order to implement the falling leaves algorithm on
the fragment shader, we need to perform two steps:

1. We render a quad that covers all the scene. Each
falling leaf will correspond to one of those frag-
ments. The fragment shader identifies the leaf it
must simulate through its fragment coordinates
and performs the simulation of the falling path.
It then issues two colors that code the actual po-
sition and orientation of the leaf and the result is
stored in two textures.

2. A second rendering step renders each leaf with
an id that identifies its position in the texture. It
reads the position and orientation and modifies
the current vertex.

This algorithm performs two extra texture access by
the vertex shader in the second step. Nonetheless, this
results in a significant improvement in the frame rate
(see Table 1). This is mainly due to the fact that only
one simulation is performed per leaf, no matter how
many triangles it has. Therefore, the computation cost
is highly alleviated.

6.2 Render-to-Vertex buffer method

The render-to-vertex buffer (r2v) also has two steps:

1. We render a quad that covers all the scene. In
this case, each vertex corresponds to one frag-
ment. The fragment shader identifies the vertex
it must simulate through its fragment coordinates
and performs the simulation of the falling path as
in the previous approach. It then issues two col-
ors that code the actual position of the vertex and
its normal. Those colors will modify the current
vertex buffer object (containing the leaves geom-
etry).

2. A second rendering step renders the vertex buffer
object. The remaining geometry (the tree trunk
and branches) is rendered as usual.
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In contrast to the previous approach, this does not re-
quire vertex texture access. However, its performance
is lower than the fragment-based approach (see Ta-
ble 1). This is mainly due to two facts. First, we
render all the leaves in a single vertex buffer object,
and, although this is positive, it does not allow the oc-
clusion query leaf elimination. Second, the fragment
shader has to modify each vertex, not each leaf. As
a result, the textures are larger and the computational
cost higher. Despite that, this approach is more general
in the sense that it can be used with older cards, even
ATI cards, as they do not support vertex texture fetch
but do support render to vertex buffer. This method has
another potential problem: as all leaves are encoded in
the texture (the ones falling and the ones which are
still on the tree or on the floor), for large forests, with
leaves represented with a large number of triangles, the
texture size might exceed the maximum of the graph-
ics card.

6.3 Results

We have compared the three implementations with dif-
ferent graphics cards and different scenes. In all cases
the fragment-based approach is better, although the
render to vertex buffer has a very positive quality, it
behaves almost constant. Our reference test system is
a Pentium Quad processor machine with 8GB of RAM
memory and a NVidia GeForce 8800 graphics card.
In Table 1 we can see the average results for a ren-
dering path over 3000 frames around a set of 7 trees.
The path is the same, and the leaves (up to 12K) are
thrown at the same rate. The scene has 800K poly-
gons. We can see how the falling leaves have a high
impact in rendering times, although not as costly as in
CPU, where, for more than 1K leaves, the rendering
falls to non interactive rates.

Strategy Average fps
No leaves in movement 209.5
Vertex shader 26.3
Fragment shader 74.7
Render to Vertex 51.5

Table 1: Average framerates through more than 3000
frames of the different strategies. Throughout the path
up to 12K leaves are thrown, although not all of them
are visible for the observer.

Several aspects are important to note. The vertex
shader approach performs less effort than the render-

to-vertex buffer method, as in the second case it re-
quires two passes, but is still the slowest one. This
is not the expected result, as in GF 8800 cards, the
processors are the same for the vertex and the frag-
ment programs, and therefore the vertex-based method
should perform better. However, the render-to-vertex
buffer method renders a single vertex buffer for all the
leaves without any special treatment per leaf, although
at the cost of modifying the position texture every time
a new leaf falls. The fragment-based method is better
in all graphics cards we tested, probably due to the fact
that only one fragment shader is executed per leaf. We
show in Table 2 the framerates for different graphics
cards. As texture memory is not a bottleneck and the
scene fits in main memory, the framerates mainly de-
pend on the graphics card, not the CPU processor.

Graphics card Units Strategy Avg. fps
GF 6800 22 Fragment 23.3

R2V 12.31
GF 8600M GT 32 Fragment 22.12

R2V 20.1
GF 8800 96 Fragment 74.7

R2V 51.5

Table 2: Average framerates through more than 3000
frames with different graphics cards. The scene has
800K polygons. Through the path 12K leaves were
thrown.

The evolution of the framerate through the path is
shown in Figure 6. We show the results with the two
strategies used together with a path where no leaf is
thrown. In Figure 7 we show the rate of throwing
leaves through the path. Moreover, in pink we can
also see how many of the falling leaves are effectively
rendered by the fragment-based approach, taking into
account the per-leaf occlusion query-based optimiza-
tion. Note that, in most of the path, roughly half of the
leaves are visible. The curve falls down when leaves
start to arrive to the ground, at that point, the fragment-
based approach rapidly recovers its maximum frame-
rate as can be seen in Figure 6.

7 Conclusions

7.1 Discussion

We have implemented the presented algorithm in a
Quad Core PC equipped with a GeForce FX 8800
graphics card and 8Gb of RAM memory. Our results
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Figure 6: Framerate throughout an exploration path with the simulation carried out in the fragment shader. The
scene has 1M polygons and more than 13K leaves are thrown throughout the navigation path.

Figure 7: Number of leaves thrown throughout the path. The blue graph shows the total leaves thrown and the
pink one shows the number of visible leafs at each moment when using leaf occlusion at the fragment-based
approach.
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Figure 9: Two images of a tree, one without ambient
occlusion (left), and the second with ambient occlu-
sion.

show that we can render several thousands of leaves
at real time with any of the strategies implemented.
The method that gives the higher framerates is the
fragment-based implementation, although the render-
to-vertex buffer approach easily keeps a constant rate
and is easier to port to older ATI cards. We have also
made some tests on different graphics cards, ranging
from GF 6800 to 8600 mobile and we achieve real-
time in all of them. However, the performance does
not necessarily scale linearly with the number of pro-
cessors, for instance, we expected a more important
performance boost in framerate for 8800 card than the
one we finally achieved. This gives an idea of the dif-
ficulty in balancing the load with the unified architec-
tures.

Figure 8 shows two images of complex scenes (1M
and 1.2M of polygons, respectively) where thousands
of leaves have been thrown at real time. Our rendering
tool includes some optimizations such as view frus-
tum culling, occlusion culling, and vertex buffer ob-
jects. Nonetheless, the renderer also implements am-
bient occlusion for the leaves. The effect is shown in
Figure 9, although it is not so noticeable for models
with darker leaves.

7.2 Future Work

Natural scenes are usually complex to model and to
simulate due to the high number of polygons needed
to represent the scenes and the huge complexity of the
interactions involved. However, the demands of more
realism in scenes do not stop growing. In this paper we
have presented a method for rendering leaves falling
in real time. Our system is capable of rendering thou-
sands of leaves at rates of up to 70-90 fps. We have
also developed a method for reusing a single falling

path in such a way that each leaf seems to fall in a
different manner. This results in low texture memory
storage requirements and bandwidth. We have also
presented a method for path reuse in order to make
longer falling trajectories by reusing the same infor-
mation data. In future we want to deal with collision
detection and wind simulation.
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Figure 8: Two different snapshots. Top: 1M polygons, 3 thousand leaves. Down: 1.2 M polygons, 24.7K
leaves.
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