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Abstract

“Dual contouring” approaches provide an alternative
to standard Marching Cubes (MC) method to extract
and approximate an isosurface from trivariate data
given on a volumetric mesh. These dual approaches
solve some of the problems encountered by the MC
methods. We present a simple method based on the
MC method and the ray intersection technique to com-
pute isosurface points in the cell interior. One of the
advantages of our method is that it does not require us
to use Hermite interpolation scheme, unlike other dual
contouring methods. We perform a complete analy-
sis of all possible configurations to generate a look-up
table for all configurations. We use the look-up ta-
ble to optimize the ray-intersection method to obtain
minimum number of points necessarily sufficient for
defining topologically correct isosurfaces in all pos-
sible configurations. Isosurface points are connected
using a simple strategy.
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1 Introduction

Given a scalar field discretized on a three-dimensional
grid, isosurfaces represent the geometry of a trivariate
function being equal to a constant scalar value. The
original MC method used for isosurface extraction is
a simple algorithm of marching through all rectilinear
hexahedral cells of a volumetric grid and computing
two-manifold isosurface for each cell independently,
in a piecewise fashion [LC87]. In each cell, the isosur-
face points are computed as zero intersections on the
edges which are linearly interpolating the scalar val-
ues at its endpoints. With the help of a look-up table, a
triangular mesh approximation to the isosurface is ob-
tained. The overall 256 possible topological cases de-
pending on the configuration of the sign of vertices in
a cell can be condensed to 14 by considering rotational
symmetry and mirror cases, that is, cases obtained by
interchanging the positive and negative signs.

However, while the look-up table of the original al-
gorithm represents single topological result for each
of the 14 cases, further research has proven more
than one topological configurations in some cases.
Chernyaev [Che95] extended the case-table of 14
“sign-configurations” to obtain 33 “topological con-
figurations” to deal with complex topologies like tun-
nels. This configuration set was further reduced to 31
distinct topological configurations in [LB03], which
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are analytically discussed in [Nie03]. We also use the
asymptotic decider test [NH91] and DeVella’s neck-
lace test [Nie03] to categorize all the cases.

Recently, there is a lot of work done in another
class of algorithms, called “dual” contouring algo-
rithms. The motivation behind these methods has been
to generate isosurfaces with better triangles as well as
to “preserve features” within each cell. MC method
generally misses the details in the cell interior, due to
under-sampling of isosurface points by linear interpo-
lation along the edges. Though this shortcoming has
been corrected using repeated subdivision of the cells
in the MC method, dual approaches eliminate the over-
head of extra storage and processing of the subdivided
cells. The “SurfaceNets” algorithm [Gib98], the “Ex-
tended MC” method [KBSS01], and dual contouring
using Hermite interpolation [JLSW02] represent ini-
tial work done in this field. However, these methods
do not address the issue of resolving and representing
multiple disconnected isosurface components within
one cell. Greß et al. [GK03] extended dual contour-
ing [JLSW02] to use more than one point within each
cell, using vertex splits. Dual contouring has been fur-
ther extended to obtain thin walls in isosurfaces by
using the calculated isosurface points from the primal
grid to make a dual grid [SW04] and then implement
MC on the new grid. Nielson [Nie04] improved the
MC-surface in a two-step procedure of generating a
“MC-Patch” surface and a “MC-dual” surface, which
is dual to the MC-patch surface. MC-patch surface
is the MC-surface after eliminating edges of triangles
within the cell.

Figure 1: Better triangles in isosurface obtained us-
ing dual contouring (left) than MC method (right) for
the fuel dataset (from http://www.volvis.org). The
dual contouring result is obtained from the isosurface
points computed using our method.

We present a dual isosurfacing method based
on ray intersection to determine isosurface
points [CHJ03] [PSL+98]. Since we are using a
dual approach, our algorithm has the typical ad-

vantages of being able to extract special features,
generating nice triangulations, and extending isosur-
face generation to adaptively refined grids without
generating discontinuities. Moreover, our algorithm
generates topologically correct isosurfaces including
tunnel cases and multiple isosurface components per
cell, computes exact points on the isosurface with
respect to trilinear interpolation, and does not require
any normal information.

For the computation of the ray-isosurface inter-
section, we determine the minimum number of rays
necessary for finding sufficient number of points in
each cell to accommodate cases of single compo-
nents, “multiple components” (i.e., disjoint pieces) of
the isosurface as well as complex features like tun-
nels. We generate a look-up table based on all 31
topological configurations of the cells [LB03]. Lopes
et. al. [LB03] had a similar analysis of 256 cases as
ours, however, they stated that finding interior points
in the cell did not suffice for good isosurface genera-
tion. In our work, we illustrate that a right choice of
diagonals can help us find a good sample set of isosur-
face points to generate the surface.

We provide a brief overview of trilinear interpola-
tion followed by the description of the ray-intersection
method. We formulate certain observed properties of
the cell diagonals used as rays, and enlist the rules used
to optimize the ray-intersections. For polygonization,
we cluster isosurface points in the neighborhood of
each cell using connectivity information. Our simple
strategy for connecting the points also guarantees that
multiple isosurface components within each cell are
rendered distinctly. We explain the algorithm for com-
puting isosurface points and our simple polygonization
strategy.

2 Mathematical Foundation

Let F (x, y, z) be the trivariate scalar field defined over
a structured rectilinear hexahedral grid, and f(u, v, w)
be its parametric representation over the domain
[xmin, xmax]× [ymin, ymax]× [zmin, zmax] ∈ R3, i. e.,
F (x, y, z) = f

(
x−xmin

xmax−xmin
, y−ymin

ymax−ymin
, z−zmin

zmax−zmin

)
.

With (ui, vj , wk) being the parametric representa-
tion of the vertices of the cell (or voxel), for i, j, k,∈
{0, 1}, the trilinear model f(u, v, w) is defined as

1∑
i=0

1∑
j=0

1∑
k=0

(1− Ui)(1− Vj)(1−Wk)f(ui, vj , wk) .

(1)
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whereUi = |u−ui|, Vj = |v−vj |, andWk = |w−wk|.
A hexahedral cell is represented by vertices with

minimum coordinates (u0, v0, w0) = (0, 0, 0) and
maximum coordinates (u1, v1, w1) = (1, 1, 1), re-
spectively. A point interior to the cell has parame-
ters (u, v, w) ∈ [0, 1]3. An isosurface associated with
value I, in parametric form and set form can be written
as

T (I) = {(u, v, w) : f(u, v, w) = I, 0 ≤ u, v, w ≤ 1}
(2)

For our ray-intersection approach, the diagonals are
used as rays and points of intersection with the trilinear
isosurface are computed. The equation of a ray r(t)
from vertex V to vertex W is given by

r(t) = V + t(W −V), 0 ≤ t ≤ 1, (3)

where r(t), V and W are position vectors which can be
represented as coordinates, or in the parametric form.

Let point p be the intersection of a ray and an im-
plicitly defined isosurface. It should satisfy Equa-
tions (1), (2) and (3). These conditions reduce to
a cubic equation in variable t, which corresponds to
the parametric representation of p on the ray, i.e.,
p = r(t), 0 ≤ t ≤ 1. The cubic equation can be
written as

G3t
3 +G2t

2 +G1t+G0 = 0 . (4)

The computation of its coefficientsG0, G1, G2 andG3

is explained in Appendix A.
We solve Equation (4) using the analytical Car-

dan’s method [Nic93] in case the equation has
points of inflexion or the numerical Newton-Raphson
method [PFTV86] otherwise. The intersection point(s)
p is then computed using the real root(s) of Equa-
tion (4) in Equation (3).

The roots of Equation (4) depend on the behavior of
the discriminant of the cubic or the reduced quadratic
equation, summarized in Table 1. Discriminant D3 for
Equation (4) is evaluated based on the point of inflex-
ion (xN , yN ) [Nic93]. We need to compute

δ2 = (G2
2 − 3G3G1)/(9G2

3) ,
(xN , yN ) = (−G2/(3G3),

G3x
3
N +G2x

2
N +G1xN +G0), and

D3 = y2
N − 4G2

3δ
3 . (5)

If G3 = 0, then the cubic equation reduces to a
quadratic one, and the quadratic discriminant D2 de-
termines the nature of the roots.

D2 = G2
1 − 4G2G0 . (6)

Degree Discriminant Nature of Roots
Cubic D3 > 0 1 real,

2 imaginary
(G3 6= 0) yN = D3 = 0 3 equal real

yN 6= D3 = 0 1 distinct real,
2 equal real

D3 < 0 3 distinct real
Quadratic D2 > 0 2 distinct real
(G3 = 0, D2 = 0 2 equal real
G2 6= 0) D2 < 0 2 imaginary

Table 1: Roots of governing cubic equation of trilinear
function depending on its degree.

An intersecting ray can produce at most three iso-
points, by virtue of the governing cubic equation.
However, for most of the cases, either one or two so-
lutions result.

3 Terminology

The sign of a vertex of a cell is positive, when the
scalar value at the vertex is greater than or equal to
a given isovalue, and negative otherwise. In the fol-
lowing, vertices will be denoted as “(+) vertices” and
“(-) vertices,” respectively.

We use cell diagonals to define rays, and depending
on the sign of the vertices on the ray, we can have ei-
ther same-sign ended rays (+/+ or -/-) or different-sign
ended rays (+/- or -/+). In the former case, there are ei-
ther zero or two solutions to the cubic equation for ray-
isosurface intersection, and in the latter, there are ei-
ther one or three solutions. Intuitively, an odd number
of intersections (or zeros) causes a sign change, and
an even number maintains the same sign at the end-
points. We denote edges with same-sign endpoints as
“(+/+) or (-/-) edges,” and different-sign ended edges
as “(+/-) edges,” see Figure 2(a).

When a cell has more (+) vertices than (-) vertices,
the cell is said to be a positive cell (“(+) cell”). Simi-
larly, if the cell has more (-) vertices than (+) vertices,
it has a negative sign and is called a negative cell (“(-
) cell”). If both (+) vertices and (-) vertices are equal in
number then, the cell is a neutral cell (“(0) cell”), with
no sign. Examples of positive, negative and neutral
cells are shown in Figure 2(b).

A cell face with four same-sign ended diagonals
and four (+/-) edges is called an ambiguous face.
An ambiguous face separated with respect to a spe-
cific sign [Che95] [NH91] means a contour on the
face is a rectangular hyperbola and the sign is that
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of the vertices in the quadrants containing the hy-
perbola, see Figure 2(c). The sign, with respect to
which an ambiguous face is separated, is determined
using the asymptotic decider [NH91]. A face sepa-
rated with respect to positive sign will be denoted as
“(+) ambiguous-face,” and that with respect to neg-
ative sign will be denoted as “(-) ambiguous-face.”
Equations for the asymptotic decider are given in Ap-
pendix A.

Figure 2: (a) Sign of ray/edge (b) Sign of cell (c) Am-
biguous face with the notations used for vertices and
their scalar values in bilinear interpolation. Solid con-
tours occur when the face is separated with respect to
positive sign, and dotted contours occur when with re-
spect to negative sign (d) Notation for cell vertices for
trilinear interpolation. Black and white vertices are
positive and negative, respectively.

4 Optimization

We exhaustively use the trilinear function for all possi-
ble configurations, and determine the topology of the
analytical isosurface. We can observe from the ana-
lytical isosurface that there are cases where more than
one diagonal of the cell intersect the same isosurface
component. Since evaluating the intersection point re-
quires a significant number of computational opera-
tions, we optimize our algorithm by finding just one

point per disjoint piece of the isosurface within the
cell. We analyze each of the 31 cases from the exhaus-
tive MC case-table [Che95] [Nie03] [LB03] to find the
diagonals used for intersection. A priori knowledge of
diagonals for intersection helps us in easy computation
of isosurface points. The choice of diagonals for in-
tersection depends on the number of ambiguous faces
of the cell, the sign of the ambiguous faces [NH91],
and the sign of the diagonals’ vertices. However, the
condition of “one-point-per-disjoint-component” is re-
laxed in the case of complex features inside the cell,
like tunnels, as sufficient points are needed to capture
the complexity of the manifold.

We categorize the original 14 sign-configurations
(numbered 0 to 13) of the MC-case table to five cat-
egories, based on their number of ambiguous faces.
There can be only cases with zero, one, two, three, and
six ambiguous faces, by virtue of the possible combi-
nations of eight connected, signed vertices. We ob-
serve that cells with the same number of ambiguous
faces show similar choices for optimal number of rays.
We define rules to distinguish between different topo-
logical configurations, and decide which diagonals are
to be used for intersection. The configurations are rep-
resented using numerical indices, which were used in
earlier works [Che95] [LB03], of the form “x,” “x.y”
or “x.y.z,” where “x” is the sign configuration, “y” the
topological configuration, and sub-configuration “z”.
Nielson [Nie03] showed analytically that there can be
just three “levels of characterization” for the cell con-
figurations. We use DeVella’s necklace test [Nie03]
(which leads to a positive result exclusively in the pres-
ence of tunnels) in a few cases to distinguish its dif-
ferent topological sub-configurations. DeVella’s neck-
lace test checks whether two vertices on a diagonal are
internally connected. Relevant equations of the test
are explained in Appendix A.

The following subsections explain the choice of the
diagonals for each sign-configuration and their respec-
tive topological configurations. Table 2 lists the differ-
ent types of diagonals in each of the sign configura-
tions, and Table 3 summarizes the rules for the diago-
nals to be used for the five categories. In this section,
for cases of analysis of signed cells, we will use the
example of a (+) cell, and similar analysis can be ex-
tended to a (-) cell, by interchanging the signs of the
diagonals, ambiguous faces and the cell.

Cases without Ambiguous Faces. Sign configura-
tions 0, 1, 2, 4, 5, 8, 9, and 11 have no ambiguous
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Case Diagonal types Case Diagonal types
0 4 (-/-) 7 3 (+/-), 1 (+/+)
1 1 (+/-), 3 (+/+) 8 4 (+/-)
2 2 (+/-), 2 (+/+) 9 4 (+/-)
3 2 (+/-), 2 (+/+) 10 2 (+/+), 2 (-/-)
4 1 (-/-), 3 (+/+) 11 4 (+/-)
5 3 (+/-), 1 (+/+) 12 2 (+/-), 1 (+/+), 1 (-/-)
6 1 (+/-), 2 (+/+), 13 4 (+/-), 1 (-/-)

Table 2: Types of diagonals for the 14 sign configura-
tions (for (+) cell, in case of non-(0) cells).

Cases Diagonals/Rays #IP.
0 AF: 1, 2, 5, For x ( 6=4),1 (+/-) 1
8, 9, 11, For 4.1, 1 (-/-) 2
4 (4.1, 4.2) For 4.2, 2 (+/+) 4 (T)
1 AF: 3 (3.1,3.2), For 3.1, 2 (+/-) 2
6 (6.1.1, 6.1.2, For 6.1.1, 1 (-/-) 2
6.2) For 6.1.2, 2 (+/+) 4 (T)

For x.2, 1 (+/-) 1
2 AF: 10,12 For x.1.1, 1 (+/+) 1
(x.1.1, x.1.2, x.2) For x.1.2, 2 (-/-) 4 (T)
(case of 2 (+) AF. For 10.2, 1(+/+) 1
for x.1.z) For 12.2, 1 (+/-) 1
3 AF: 7 (7.1, 7.2, For 7.1, 3 (+/-) 3
7.3, 7.4.1, 7.4.2) For 7.2, 2 (+/-) 2

For 7.3, 1 (+/-) 1
For 7.4.1, 1 (+/+) 2
For 7.4.2, 3 (+/-) 3 (T)

6 AF: 13 (13.1, For 13.1, 4 (+/-) 4
13.2, 13.3, 13.4, For 13.2, 3 (+/-) 3
13.5.1,13.5.2) For 13.3, 2 (+/-) 2

For 13.4, 1 (+/-) 1
For 13.5.1, 1(+/-)C 3
For 13.5.2, 1(+/-)C 1(DS)

& 3(+/-) & 3(T)

Table 3: Rules used to choose diagonals in 31 topolog-
ical configurations based on the number of ambiguous
faces (for (+) cell, in case of non-(0) cells). Notations:
“AF” implies ambiguous faces, “IP” means isosurface
points, T stands for tunnel points, DS represents dis-
joint surface, and (+/-)C (in case 13) is the (+/-) diag-
onal through the common vertices of 3 (+) ambiguous
faces and 3 (-) ambiguous faces, respectively.

faces, see Figure 3. We ignore case 0 in our diagonal
analysis, as in this case, the cell does not intersect the
isosurface. Except for case 4, all the others have just
one topological configuration each, and one isosurface
component each. It can be seen from the analytical tri-
linear surface, shown in Figure 3, that cases 1, 2, 5, 8,
9, and 11 can use a (+/-) diagonal for intersection.

In case 4, two different topologies occur, depend-

ing on whether the vertices on the (-/-) diagonal are
“internally connected”. In configuration 4.1, the con-
tour forms disjoint surfaces, and in configuration 4.2,
they are internally connected to form a tunnel. We use
DeVella’s necklace test to distinguish between the two
sub-configurations [Nie03]. For configuration 4.1, the
(-/-) diagonal is used for intersection, and for configu-
ration 4.2, 2 of the 3 (+/+) diagonals are used to obtain
multiple points for defining the tunnel.

Figure 3: Topological configurations with no ambigu-
ous faces: trilinear model in yellow-orange, isopoints
in black, positive nodes in blue, rays in cyan.

Cases with One Ambiguous Face. Sign configura-
tions 3 and 6 have one ambiguous face each, as shown
in Figure 4. If a (+) cell has a (+) ambiguous face (i.e.,
the same sign as the cell), a single isosurface compo-
nent occurs; and if the (+) cell has a (-) ambiguous
face, two isosurface components occur. 3.1 and 6.1 are
configurations where there are two disjoint isosurface
pieces, and 3.2 and 6.2 are configurations with a single
isosurface piece. In the case of 6.1, a same-sign ended
diagonal intersects the isosurfaces, and the vertices on
the diagonal may be internally connected [Nie03] to
form a tunnel. Thus, there are two sub-configurations
6.1.1 and 6.1.2, based on the absence and presence of
a tunnel, respectively, and they can be distinguished
using the DeVella’s necklace test. In the case of two
isosurface components and no tunnels (cases 3.1 and
6.1.1), for a (+) cell, a (-/-) diagonal is used to obtain
two intersection points. In case of 3.1, where there are
no (-/-) diagonals, two (+/-) diagonals are used to ob-
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tain an intersection point each. For case 6.1.2, both
(+/+) diagonals are used to obtain four intersection
points on the tunnel. In the case of a single isosur-
face component, in cases 3.2 and 6.2, a (+/-) diagonal
is used to determine an intersection point.

Figure 4: Topological configurations with one am-
biguous face: trilinear model in yellow-orange, iso-
points in black, positive nodes in blue, rays in cyan.

Cases with Two Ambiguous Faces. Sign configu-
rations 10 and 12 have two ambiguous faces, see Fig-
ure 5. In this case, there are two topological config-
urations based on the signs of the ambiguous faces.
If both ambiguous faces are separated with respect to
the same sign, then a same-sign ended diagonal of the
cell can intersect two disjoint isosurface pieces (cases
10.1.1 and 12.1.1), or the vertices of the diagonal can
be internally connected to form tunnels (cases 10.1.2
and 12.1.2). If the ambiguous faces are separated with
respect to different signs, then a single isosurface piece
occurs (cases 10.2 and 12.2). In the case of a single
isosurface component (cases 10.2 and 12.2), a (+/-) di-
agonal is used to obtain a single intersection point. In
the case of disjoint surfaces in a configuration with two
(+) ambiguous faces, a (+/+) diagonal is used to obtain
two intersection points. Similarly, in the case of two
(-) ambiguous faces and disjoint surfaces, a (-/-) diago-
nal is used. In the case of a tunnel and two (+) ambigu-
ous faces, two (-/-) diagonals (in case 10.1.2) or one
(-/-) diagonal and two (+/-) diagonals (in case 12.1.2)
are used. A similar extension is done for a tunnel and
two (-) ambiguous faces.

Cases with Three Ambiguous Faces. Sign config-
uration 7 has three ambiguous faces, see Figure 6. In
a (+) cell, there are four possibilities of sign combina-
tions of the three ambiguous faces, represented in set

Figure 5: Topological configurations with two am-
biguous faces: trilinear model in yellow-orange, iso-
points in black, positive nodes in blue, rays in cyan.

form as (1) (+,+,+), (2) (+,+,-), (3) (+,-,-), and (4) (-,-
,-). In configuration 7.1, there are three (+) ambiguous
faces, which leads to three disjoint surfaces, and three
(+/-) diagonals are used as rays. In configuration 7.2
with two (+) ambiguous faces and one (-) ambiguous
face, two disjoint surfaces are formed. In this case, two
(+/-) diagonals are used through the (+) vertices in one
of the (+) ambiguous faces. These rays are specifically
used to ensure that one obtains one intersection point
per surface. In configuration 7.3, with one (+) ambigu-
ous face and two (-) ambiguous faces, one surface oc-
curs, and any one of the (+/-) diagonals can be used. In
configuration 7.4 with three (-) ambiguous faces, there
are two disjoint surfaces. However, in this case the
vertices on the (+/+) diagonal can be internally con-
nected to form a tunnel. Thus, there are two topolog-
ical sub-configurations, 7.4.1 and 7.4.2, with two dis-
joint surfaces and with a tunnel, respectively. In case
7.4.1, a (+/+) diagonal is used to obtain two intersec-
tion points. In case 7.4.2, all three (+/-) diagonals are
used to obtain three points on the tunnel.

Cases with Six Ambiguous Faces. Sign configura-
tion 13 has six ambiguous faces and four (+/-) diag-
onals, see Figure 7. There are seven possibilities of
sign combinations of the six ambiguous faces, which
are, (1) (+,+,+,+,+,+), (2) (+,+,+,+,+,-), (3) (+,+,+,+,-
,-), (4) (+,+,+,-,-,-), (5) (+,+,-,-,-,-), (6) (+,-,-,-,-,-), and
(7) (-,-,-,-,-,-). However, this can be reduced to four
cases, as (1) and (7), (2) and (6), and (3) and (5) are
pairs of mirror cases.

In configuration 13.1 with all six (+) ambiguous
faces, four disjoint surfaces are formed and all the
diagonals are used. In configuration 13.2 with five
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Figure 6: Topological configurations with three am-
biguous faces: trilinear model in yellow-orange, iso-
points in black, positive nodes in blue, rays in cyan.

(+) ambiguous faces and one (-) ambiguous face, three
disjoint surfaces are formed. Except for a diagonal
through one of the two (+) vertices in the (-) ambigu-
ous face, all the other three (+/-) diagonals are used.
Specific rays are used in order to generate one inter-
section point per surface piece.

In configuration 13.3 with four (+) ambiguous faces
and two (-) ambiguous faces, there are two disjoint
surfaces. We find the (+) vertex that is common to
all three (+) ambiguous faces, and the (+/-) diagonal
through this vertex is one of the two rays used for iso-
surface computations. Any one of the remaining three
diagonals is used as the second ray. In case of equal
number of (+) and (-) ambiguous faces, suppose A and
B are two vertices of the cell, such that A is common
to all (+) ambiguous faces and B is common to all (-
) ambiguous faces. AB is a diagonal of the cell. There
are two possibilities of this configuration depending on
the signs of A and B.

In configuration 13.4, the sign of the common vertex
is different from that of the faces (i.e., A is a (-) vertex
and B, a (+) vertex), and in configuration 13.5, it is the
same as that of the faces (i.e., A is a (+) vertex and B
is a (-) vertex). In configuration 13.4, there is one iso-
surface piece, and any one of the four (+/-) diagonals
can be used.

In configuration 13.5, there can be three disjoint
surfaces, which can reduce to two, in case of inter-
nal connection. In configuration 13.5.1, there are three
disjoint surfaces, and three intersection points are ob-
tained from the (+/-) diagonal through the common
vertex of the three same-signed ambiguous faces (i.e.,
AB). This is the unique case where a (+/-) ray leads
to three solutions. In configuration 13.5.2, two dis-

joint surfaces occur, of which one is a tunnel. Hence,
the diagonal through the common vertex of the three
same-signed ambiguous faces (AB) is used as a ray.
The remaining three diagonals are used as rays to find
isosurface points for the tunnel. Thus, all four diago-
nals are used in case 13.5.2. However the difference in
the diagonals used for the two surfaces is to be stored
for connectivity during polygonization.

Figure 7: Topological configurations with six ambigu-
ous faces: trilinear model in yellow-orange, isopoints
in black, positive nodes in blue, rays in cyan.

Figure 8: (a) Associations of isosurface point (in red)
with vertex A (in blue), which is the endpoint of the
intersecting diagonal closer to the isosurface (curved
lines), and the edges “e” containing A; (b) Configura-
tions where isosurface point is associated with vertex
A on the intersecting diagonal, and additional asso-
ciations between isosurface point and vertices, B, are
made. Blue cell vertices are associated with the red
isosurface point, the bold dotted line is the intersecting
diagonal, and the curved boundary is the isosurface.

5 Algorithm

Our algorithm involves two major steps: (1) isosurface
point computation and (2) triangulating the isosurface
points.

We generate a look-up table for the choice of diag-
onals in each topological configuration. This a priori
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information saves a lot of computation time. Our al-
gorithm generates a list of all the heterogeneous cells,
and evaluates the topological configuration of each
cell. Based on its configuration, the diagonals speci-
fied in the look-up table are used to find out the isosur-
face points.

We associate each isosurface point with an edge of
the cell, when the edge contains the end-point of the
diagonal (used for the respective intersection) nearest
to the isosurface point, as shown in Figure 8(a). Cer-
tain configurations require additional associations with
vertices to make appropriate connectivity, see Fig-
ure 8(b). The isosurface point is then associated with
all the edges containing its associated vertices. An
edge is shared by four neighboring cells, and thus, it
can get associated with three or four isosurface points
(which are in different cells that share the edge). The
isosurface points associated with an edge are con-
nected to form one or two distinct non-overlapping tri-
angles. This strategy is similar to the connectivity used
in earlier dual isosurfacing works [Gib98] [JLSW02],
and it results in a triangular mesh. In cases of tunnels,
we treat them as isolated cells with no neighbors and
employ polygonization for its isosurface points inde-
pendently [LB03].

6 Results and Discussion

We have applied our algorithm on a synthetic
2x2x2 dataset especially for the tunnel cases. Fig-
ures 9, 10, 11, 12, and 13 show examples of config-
urations with zero, one, two, three, and six ambigu-
ous faces. They demonstrate how our algorithm gener-
ates isosurfaces which are topologically equivalent to
the ones generated by trilinear interpolation. In some
cases, MC algorithm fails to produce the same result,
which is due to the fact that not all cases of ambiguity,
especially the internal ambiguities, are resolved in the
MC algorithm.

We have further applied the algorithm on a few of
the standard datasets. Figure 1 and 14 show the result-
ing isosurfaces in comparison to isosurfaces extracted
using a state-of-the-art MC method. Superposition of
both surfaces show their similarity. Since our algo-
rithm have memory limitations in the polygonization
phase, for datasets bigger than 64x64x64, we have to
downsample the datasets by a ratio, as shown in the
cases of bonsai and skull datasets, as shown in Fig-
ure 14. The computation times required to generate
the points on the isosurface are similar to those re-

Figure 9: Trilinear surface (left), MC result (middle),
and Dual Isosurfacing result (right) for 2x2x2 syn-
thetic dataset with a tunnel and no ambiguous faces.

Figure 10: Trilinear surface (left), MC result (middle),
and Dual Isosurfacing result (right) for 2x2x2 syn-
thetic dataset with a tunnel and one ambiguous face.

quired by the standard MC algorithm. For these exam-
ples, the performance statistics are shown in Table 4.
The results show that time performance depends on the
number of tunnel cases.

Dataset(Size, Ratio) Computation # Tunnels
Time (in s)

Neghip (32x32x32, 1:1) 0.96 0
Buckyball (32x32x32, 1:1) 1.67 0
Bonsai (256x256x256, 1:4) 2.36 42
Skull (256x256x256, 1:4) 4.08 67

Table 4: Performance of the algorithm
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Figure 11: Trilinear surface (left), MC result (middle),
and Dual Isosurfacing result (right) for 2x2x2 syn-
thetic dataset with a tunnel and two ambiguous faces.

Figure 12: Trilinear surface (left), MC result (mid-
dle), and Dual Isosurfacing result (right) for 2x2x2
synthetic dataset with a tunnel and three ambiguous
faces.

Figure 13: Trilinear surface (left), MC result (middle),
and Dual Isosurfacing result (right) for 2x2x2 syn-
thetic dataset with a tunnel and six ambiguous faces.

Figure 14: Dual contouring result (left), MC re-
sult (middle), and comparisons of both surfaces by
superposition for regular datasets of size 64x64x64
of Neghip (top) and Buckyball (second), and of
size 256x256x256 (rendered in 1:4) of Bonsai
(third) and Skull (bottom). (Datasets available at
http://www.volvis.org.)

The polygonization step still needs to be improved.
Using efficient data structures like kd-trees [GK03],
for example, would improve the performance of this
method tremendously by more robust representation
of neighborhood. The current polygonization method
is O(n) for a grid size n, which is not favorable for
grid sizes greater than 64x64x64. Hence an opti-
mized memory management is a necessary step for this
method.

We plan to generalize our method to adaptive grids
and irregular meshes. Other future directions include
developing a meshless surface construction using the
isosurface points directly. Moreover, we plan to ana-
lytically calculate the translation in the axis, using the
analytical trilinear model [Nie03], and employ the des-
ignated diagonals for intersection.

urn:nbn:de:0009-6-11700, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 4(2007), no. 4

7 Conclusion

We have presented a dual isosurfacing method based
on ray intersection to determine isosurface points.
Apart from having the typical advantages of dual ap-
proaches (being able to extract special features, gen-
erating high quality triangulations, and extending it to
isosurface generation in adaptively refined grids with-
out generating discontinuities), our algorithm gener-
ates topologically correct isosurfaces, including tun-
nel cases and multiple isosurface components per cell,
computes exact points on the isosurface with respect to
trilinear interpolation, and does not require any normal
information such as Hermite data.

Appendix A

The parametric equation for the isosurface (Equa-
tion (2)) in Section 2 can be rewritten as:

Fi(u, v, w, I) = Auvw +Buv + Cvw +Dwv +
Eu+ Fv +Gw +H, (7)

where I is the given isovalue and Tijk = f(ui, vj , wk)
denote the vertices of a cell, see Figure 2(d). The val-
ues of coefficients are :

A = −T000 + T010 − T110 + T100

+T001 − T011 + T111 − T101,

B = T000 − T010 − T100 + T110,

C = T000 − T010 − T100 + T110,

D = T000 − T100 − T001 + T101,

E = −T000 + T100,

F = −T000 + T010,

G = −T000 + T001, and

H = T000 − I .

Let (ur0 , vr0 , wr0) and (ur1 , vr1 , wr1) be the endpoints
of the ray (in parametric form). The intersection
point is given, in parametric form, by (u∗, v∗, w∗) =
(ur0 + t∆ur, vr0 + t∆vr, wr0 + t∆wr), where ∆ur =
ur1 − ur0 , ∆vr = vr1 − vr0 , ∆wr = wr1 − wr0 , and
parameter t, 0 ≤ t ≤ 1, computed using the ray equa-
tion (Equations (3) and (4)). The coefficients G0, G1,
G2, and G3, of the cubic equation (Equation (4)) are

obtained by using Equation (7), Fi(u∗, v∗, w∗, I) = 0.

G0 = Fi(ur0 , vr0 , wr0 , I),
G1 = A(ur0vr0∆wr + vr0wr0∆ur + wr0ur0∆vr)

+B(vr0∆ur + ur0∆vr) + C(wr0∆vr

+vr0∆wr) +D(ur0∆wr + wr0∆ur)
+E∆ur + F∆vr +G∆wr,

G2 = A(ur0∆vr∆wr + vr0∆wr∆ur

+wr0∆ur∆vr) +B∆ur∆vr + C∆vr∆wr

+D∆wr∆ur, and

G3 = A∆ur∆vr∆wr .

For the asymptotic decider test [NH91], one uses bi-
linear interpolation to compute a value V = T00T11 −
T01T10−I(T00+T11−T01−T10), for a given isovalue
I, see Figure 2(c). The test states that when V < 0,
the isocontour is a rectangular hyperbola in the first
and third quadrants, and when V > 0, then the iso-
contour is a rectangular hyperbola in the second and
fourth quadrants.

DeVella’s necklace test states that if G[Fi] < 0
and Disc[Fi] > 0, then there exists a tunnel in
the cell [Nie03] for values G[Fi] and Disc[Fi] ob-
tained from the coefficients of the isosurface equa-
tion(Equation (7)):

G[Fi] = (AE −BD)(AF −BC)(AG− CD),

Disc[Fi] = (AH)2 + (BG)2 + (CE)2 + (DF )2

−2ABGH − 2ACEH − 2ADFH
−2BCEG− 2BDFG− 2CDEF
+4AEFG+ 4BCDH .
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