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Abstract

The paper proposes a hybrid system for position es-
timation of a motion capture suit and gloves as well
as a method for an automatic skeleton calibration for
motion capture gloves. The skeleton calibration works
with a single image scan of the hand where the skele-
ton is fitted. The position estimation is based on a syn-
chronization of an inertial motion capture system and
a single camera optical setup. The proposed synchro-
nization uses an iterative optimization of an energy po-
tential in image space, minimizing the error between
the camera image and a rendered virtual representa-
tion of the scene. For each frame, an input skeleton
pose from the mocap suit is used to render a silhouette
of a subject. Moreover, the local neighborhood around
the last known position is searched by matching the
silhouette to the distance transform representation of
the camera image based on Chamfer matching. Using
the combination of the camera tracking and the inertial
motion capture suit, it is possible to retrieve the posi-
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tion of the joints that are hidden from the camera view.
Using the proposed hybrid technique, it is possible to
capture the position even if it cannot be captured by
the suit sensors. Our system can be used for both real-
time tracking and off-line post-processing of already
captured mocap data.

Keywords: motion capture, inertial suit, optical sys-
tem, optical-inertial synchronization, silhouette track-
ing, glove skeleton calibration

1 Introduction

Considering the problem of person tracking and move-
ment analysis, there are many motion capture (mocap)
solutions available in both academia and industry. Mo-
cap is a widely used technique for storing and process-
ing movement data of the person. Reliable motion cap-
ture and tracking are necessary for the film and games
industry, virtual reality, biometrics or even healthcare.

Optical-based tracking is more problematic in the
tracking area if it has occlusions. Moreover, the track-
ing area might be very non-convex, and therefore not
coverable by optical-based mocap and tracking sys-
tems. In such a case, it is suitable to use non-optical
methods for tracking; however, some other limita-
tions appear, such as drifting, calibration and synchro-
nization problems, or additional noise in the captured
data. Sometimes, these limitations are solved by a
post-processing of raw data using complex probabilis-
tic models that have to be trained on reliable train-
ing datasets, which might be impossible to obtain in a
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given situation. Nowadays, there are a variety of mo-
cap systems suitable for recording body movements.

There are two major groups of mocap systems,
optical-based and inertial-based systems. Each group
has its own advantages and limitations. The advan-
tages of inertial systems are the flexible capture area
(outdoor capture, water capture), occlusion indepen-
dence, fast setup time, transferability and the possibil-
ity to use directly the raw output data for a 3D model.
The biggest disadvantage is that one can get only rota-
tion data for each skeleton joint. The joint positions in
3D space have to be calculated based on the calibration
process and the root position estimation, which have to
be approximated by a walking algorithm implemented
in the mocap software.

On the other hand, the optical systems are limited to
indoor use only. They have problems with occlusions
and cannot directly return information about the joint
rotation around the bone axis. The individual joint
position can be tracked easily; however, the rotations
need to be calculated in the next evaluation stage. In
order to solve the positioning disadvantage of inertial
systems, solutions using radio/NFER or ultrasound po-
sitioning have been proposed. However, these systems
are in general hard to calibrate and synchronize.

Furthermore, in our project, we need to obtain reli-
able position tracking of the inertial suit using a com-
modity RGB camera. The whole system should be af-
fordable and it should be compatible with both outdoor
and indoor usage.

Therefore, we propose a hybrid optical-inertial sys-
tem. In this system, the mocap inertial suit is com-
bined and synchronized with a single camera. Once
the camera is calibrated and the relative position and
orientation are calculated, it can be used for real-
time effortless position estimation. The hybrid system
does not require a training phase and has advantages
over both optical and inertial motion capture systems.
Other hybrid tracking systems either need a compli-
cated setup or are much more expensive. Our system
requires only an inertial suit and a single RGB camera.

2 Related Work

Inertial Suits There are several inertial IMU suits
available on the market: the 3DSuit by Inertial Labs,
the IGS Cobra suit by Synertial, the MVN suit by
XSens and the Perception Neuron suit by Noitom. The
suits differ in sensor configuration, price, and preci-
sion. For example, the suits from XSens and Synertial

have a higher number of sensors and can stream raw
data for all the sensors. The Perception Neuron suit is
a cheap and affordable solution for the general public,
with a smaller set of sensors. Afterward, the streamed
data available to the reader are interpolated from the
raw sensor data.

Optical Mocap Optical systems can be divided into
two main groups: systems based on passive retro-
reflective or active markers, and marker-less mocap
systems that are trained on a set of training images.

The marker-based systems are able to perform with
much higher accuracy. In practice, optical systems
and suits with markers are used, e.g. OptiTrack or Vi-
con. A group of multi-view RGB-only-based mocap
systems working without a training stage exists, us-
ing a shape from silhouette or sums of spatial Gaus-
sians [CBKO3,ISHG " 11]. These optical systems usu-
ally need a complicated setup and multiple cameras.

The trained probabilistic marker-less techniques
[WWSO09, IARS10] that work on RGB images are not
very precise in general. Thus, they are typically used
for academic research testing only, or they have to be
fused with inertial sensors as in [PMBHT10]. Re-
cently, a helmet with two fisheye RGB cameras was
proposed in [RRCT16] for the motion capture of a
subject wearing the helmet. The system can only cap-
ture the motion of the skeleton; this cannot be used for
position tracking.

Probabilistic optical approaches can be trained di-
rectly on depth values obtained by an RGBD camera,
for example Kinect. The Kinect is mostly used for
real-time pose estimation [SSK™13]]. This probabilis-
tic skeleton estimation is not very precise but is well
suited for the fun real-time applications where Kinect
tracking is mostly used. Moreover, the Kinect can be
used for both real-time skeleton estimation and surface
reconstruction using Kinect Fusion [IKH™11]. Depth
values from the RGBD camera can be used for point
cloud reconstruction and the skeleton can be extracted
from a point cloud. However, this process is too slow
for real-time motion capture. Nevertheless, it can be
used for body size estimation and calibration from a
single scan. These data can be used to improve motion
capture data [ASK™05].

Moreover, the probabilistic optical-based systems
are trained on RGB or RGBD images and estimate
position in 3D space based on probabilistic models
[SSK™13,[ARS10]. An optical flow based on Cham-
fer matching can be used to track the subject without
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a training stage [DLF06, [KAOS8|]. These methods can
be used directly on the input frames; however, a back-
ground subtraction is a necessary preprocessing step
to obtain robust tracking results.

An extensive comparison of inertial and optical-
based motion capture suits can be found in [SN11].

Person Tracking Similarly as in the case of mocap
solutions, the tracking can be optical-based or approx-
imated using triangulation of distances to the signal
source, e.g. GPS. The lighthouse tracking by Valve is
part of HTC Vive and it is based on measuring the time
delay between emitting a flash and sweeping a beam of
light across the room. The receivers calculate the time
delay between these two light flashes and using sim-
ple trigonometry, the 3D position of the receiver can
be evaluated in real-time.

Hybrid Systems Several hybrid approaches were
published in recent years. The hybrid systems for a
skeleton and position tracking are based on a fusion
of the IMU orientation data and some other sensor.
In [ZKST11], the subject wearing an inertial suit is
tracked by a robot with a laser scanner. Such a com-
bination can track the subject’s position and trajectory
in large areas; however, it might be impossible to use
the robot in small interiors, and the robot is a too ex-
pensive tool for common usage.

A fusion of multi-view RGB cameras with few
IMUs was proposed in [PMBHT'10, YMPMRT6].
These approaches for fusion give very good results;
however, the fusion needs a scanned template model
of the subject and the system needs multiple RGB
cameras in order to correctly fit the template into
the silhouette. A combination of discriminative and
generative tracking using a depth sensor was used in
[HMST13]]. The approach also needs a template mesh
model and the RGBD camera has a very limited vol-
ume in which the fusion works precisely enough.

In general, the mentioned related hybrid approaches
either need a much more complicated and expensive
setup (multiple cameras, depth camera, robot), or they
have a much more complex tracking pipeline than our
approach (template mesh scanning, non-linear energy
minimization, training stage).

3 Optical-Inertial Synchronization

The main idea behind the optical-inertial tracking so-
lution of the suit and the camera is determining the 3D

position of the actor from his silhouette in the camera
image based on his actual pose. Knowing the actor’s
skeleton pose from the suit in real-time, we are able to
predict the body shape we are looking for within the
camera image. First, a base mesh is constructed us-
ing the actor’s specific parameters, such as height or
local diameters. This mesh is then used for render-
ing a shape which is similar to the actor’s silhouette in
the image. A virtual camera which is used for the base
mesh rendering needs to see the scene the same way as
a real camera sees the scene with the actor; therefore,
it needs to be calibrated.

The rendered base mesh silhouette is then used to
search the local neighborhood of the last known po-
sition of the subject in the next image frame. Min-
imizing the energy composed of spatial integration
of Chamfer matching error in the image space, we
are able to perform real-time tracking of the subject.
During the tracking, a 3D virtual scene is rendered
and matched to the camera image; therefore, if it is
matched with the precisely calibrated camera setup,
we are able to directly estimate the 3D position of the
subject in the real world.

3.1 System Overview

The whole tracking system is composed of three
phases: a calibration phase, a tracking start-up phase,
and an iterative tracking phase. The first two phases
are used for the initial setup only to determine and to
correctly represent the real world in the tracking sys-
tem; therefore, the third phase is the actual tracking
stage.

The calibration phase needs to be done only once,
or when the camera is replaced. This step is required
to acquire correct camera parameters. The parameters
can be saved and reused before each tracking session.

The second stage, the tracking start-up phase, needs
to be performed at least once before each session,
to synchronize the real-world camera with the virtual
camera of a system, and to specify the actor’s start-
ing location for the tracking. However, there is a pos-
sibility to assign these properties during the iterative
tracking phase seamlessly without the interruption of
the tracking procedure.

Finally, the tracking phase is iteratively performed
during the whole remaining tracking time. An output
of this stage is the true 3D position of the actor in both,
the virtual scene and the real world.
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3.2 Initial Setup and Calibration

For the camera calibration, an OpenCV library with
its built-in modules is used. We used the ChArUco
module that uses a hybrid checkerboard for both cam-
era calibration and camera position estimation, as can
be seen in Figure[I] Given several pairs of point cor-
respondences of calibration patterns in the real world
and in the image space, it is possible to find intrinsic
and extrinsic parameters of the camera.

The ChArUco calibration board.
ChArUco is a combination of the classical calibration
checkerboard and the ChArUco alphabet signs.

Figure 1: The

Next, the body size of the actor needs to be mea-
sured manually using a ruler, or in an automatic way
using a Kinect or calibrated RGB camera. The mea-
sured body height and body radii are then used to-
gether with the mocap position to construct a base
mesh approximating the body of the subject.

3.3 Virtual Scene Creation

The main idea behind the synchronization is to create
a virtual scene according to the parameters acquired in
the real world. This step is called the tracking start-
up phase, and it must generally be executed before
each tracking session when some scene properties are
changed, e.g. the camera is moved or changed, or start-
ing position is changed, etc.

In order to get the origin of the virtual space, a
ChArUco board marker (see Figure 2) is placed in
front of the camera. As an input, it takes correspond-
ing points together with board parameters and as an
output, it produces the rotation and translation trans-
formations that give us a model-view matrix of the
checkerboard in world space coordinates. Having the
ChArUco marker detected, we are able to estimate the
camera position and orientation relative to the origin.
The second purpose of placing a ChArUco board into
the scene is to define the starting position of the actor
(the actor starts in the origin of the virtual scene). This
is the position where the tracking starts. The precision
of the tracked position relies deeply on the camera cal-
ibration and proper virtual scene setup (see Figure [3).

Figure 2: A model-view matrix that consists of a ro-
tation and a translation of the ChArUco board into
the camera image is obtained in the tracking start-up
phase. Thus, the origin of the virtual scene is set into
the ChArUco board location and the camera position
and orientation are set accordingly.

If the ChArUco board cannot be used for some rea-
son, the starting position and camera parameters can
always be set manually.

3.4 Silhouette Image Database Construction

The camera image contains objects and subjects which
are not important for the system. The goal of the sys-
tem is to locate and track only the actor dressed in
the motion capture suit. Therefore, the pose data from
the suit are used to determine this. The reader of the
suit rotations is able to stream local transformations
for each frame in real-time.

Firstly, a shape that roughly represents the actor’s
body is needed. Here, it might be possible to use a
broad set of shapes, from primitives roughly approxi-
mating the body to a highly detailed 3D scan. How-
ever, we choose to create a simple base mesh approx-
imating the body shape mesh from the input skeleton,
because it is easily customizable, scalable and can be
generated in real-time for any skeleton pose. For this
an SQM algorithm is used, which is able
to generate such a mesh specifying only the skeleton
and the radius of a sphere around each skeleton node
(see Figure [d)). These radii as well as skeleton height
are dependent on the actor’s body type and need to be
measured or approximated manually. Such a specific
base mesh is generated only once, and a pose for ev-
ery frame is created by applying rotations from suit
sensors and transforming the base mesh accordingly
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Figure 3: A virtual scene is constructed based on the
camera calibration, calculated scene parameters, and
current mocap data. Using either the real-time mocap
data or stored off-line mocap data, a silhouette of the
tracked subject is approximated and later used during
the tracking phase.
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Figure 4: A base mesh is created using the skeleton ac-
quired from the mocap suit. The skeleton is enhanced
with measured radii of the actor’s body. Note that the
base mesh construction process is depicted in 2D only.

using a skinning algorithm.

By creating the virtual scene and calibrating it with
the virtual camera, it is possible to render an image
of the base mesh as if it was seen by a real camera.
Afterward, this image is processed to obtain only the
silhouette of a rendered image. Finally, a set of sil-
houette images is rendered, applying several shifts of
a base mesh in eight evenly distributed directional vec-
tors on the ground plane in 3D space. Our set consists
of silhouettes rendered into images, where the skele-
tons of the silhouettes are shifted k times by d in a
space around a specified pose as well as one image of
a base mesh exactly in the current position, as can be
seen in Figure [6] In our experiments, we used con-

Figure 5: Tracking of the actor position using Cham-
fer matching. (Top) an input image and the subtracted
background image in grayscale. (Bottom) applied
adaptive thresholding and calculated distance trans-
form of the silhouette.

stants d = 10cm and k = 3; therefore, in total, a set
of 25 images is rendered and stored in the silhouette
database for every skeleton pose.

3.5 Body Tracking

The tracking phase begins after the tracking start-up
phase was executed successfully, which properly sets
up a camera for rendering the base mesh silhouette
database. An actor is located in a specified position
defined by the ChArUco board placed in the scene. At
this point, the tracking phase is ready to start. This
start-up position is considered to be the actor’s true po-
sition in the first frame. For each next frame, a motion
vector is calculated to evaluate the actor’s next posi-
tion.

First, the captured camera image is pre-processed
using background subtraction, it is thresholded and the
Canny edge detection is performed so that only the ac-
tor’s silhouette is obtained. Then, the image is trans-
formed into a distance transform image (see Figure[5).
Afterward, the already pre-rendered database of base
mesh silhouette images is used to evaluate the energy
e for the optimization. The error potential e is calcu-
lated for each silhouette as an integration of the dis-
tance transform function DT'(z) over the actor silhou-
ette S as

er = / / DT (x(s, t))dsdt, (1)
S

where parameters s and ¢ are the parameters of the
one-dimensional silhouette curve and a kernel function
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Figure 6: The pipeline of our optical-inertial synchronization. (Top) the camera image is thresholded and
transformed into a distance transform image. (Bottom) a base mesh is constructed based on the acquired
skeleton and it is rendered in different positions. The base of 8 search vectors is used to render 8 shifted
silhouettes. The Chamfer matching of the rendered base mesh and the distance transform image is performed,
and the error is evaluated. Finally, the error minimization is used to find the next position in 3D space.

that is applied over the curve to make the silhouette
wider, respectively. The term x(s, t) is a function that
maps parameters s and ¢ to the image space, where
function DT'(x) is evaluated. The integration in dis-
crete form is performed in the image space as a sum
of non-zero pixels from silhouette image S}, and nor-
malized afterward, thus the error potential integration
in our implementation is calculated as

F count_non_zero(Sy,) ’

2

where (i, j) refers to a pixel position of the image with
dimensions m x n, DT is the distance transform im-
age, Sy is the binary silhouette mask image and the
function count_non_zero() returns the number of non
zero pixels contained in the image. Minimizing the er-
ror energy by varying the silhouette image Sy, we are
able to evaluate the direction and the magnitude of the
subject’s movement based on the shift vectors used for
the construction of a database image. Adding such a
vector to the position of an actor in the last frame, we
are able to evaluate the actor’s position in the current
frame. At the end of the tracking phase, we have a
raw corrected 3D position of the actor. The pipeline of
the system until this point can be seen in Figure[6] To
enhance the raw data, some suitable post-processing
method might be used.

3.6 Glove Tracking

For the position estimation of the hand, we used a two-
step approach instead of the one-step we used for the
body position estimation. First, an initial position is
estimated quickly using an image-space shape align-
ment. The precise position might be estimated after-
ward using silhouette matching similar to the one used
for the body tracking. The reason for the initial align-
ment is, that the hand has less complex possibilities of
movement, the core part of the hand does not change
within the pose so rapidly, but the movement of the
hand can be very fast; thus, the tracking needs to be
performed with higher performance, and it has to be
able to instantly recover from errors caused by the loss
of position tracking. Since increasing difference be-
tween sequential camera frames decreases the perfor-
mance of the Chamfer matching and the position opti-
mization, we designed a pipeline for quick estimation
of initial hand position.

The grayscale camera image of performer’s hand is
thresholded and post-processed using a median filter-
ing in order to obtain a segmented real hand image.
Since we used black tracking gloves we segmented
the darkest area with a constant threshold value. A
template mesh is deformed by a posing data obtained
from the IMU sensors using linear blend skinning. At
each tracked frame, the skinned template is initially
rendered on a system defined default position. The po-
sition is iteratively refined by image-space alignment
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Figure 7: The pipeline of an inertial glove position es-
timation. (Top left) the camera image, (top right) a
segmented camera image and detected blue palm cir-
cle. (Bottom left) the template model rendered at a de-
fault position with red palm circle found and (bottom
right) an aligned template model with segmented cam-
era image overlay after three iterations of image-space
alignment. Use of initial default position for mesh
template enables for a quick recovery from tracking
failures.

procedure in order to estimate a rough position of the
hand.

The image-space alignment begins with a calcula-
tion of inscribed circles for both the segmented camera
image and the template image. An inscribed circle is
calculated by observing global maxima of the distance
transform function, where the coordinate of maxima
defines the center and the value of maxima defines the
radius of the circle. The two circles are then aligned in
image-space for each iteration of an algorithm, using
two alignment steps (the process is depicted in Figure
[B). The resulting alignment should deliver a situation
where the size and position of circles match.

Figure 8: Two steps of image-space circle alignment
procedure, a top view of a virtual camera view frus-
tum. (Left) the positions of circle centers are aligned
in order to estimate an image aligned position Py of
the template mesh. (Right) depth guess to position Py
is updated according to the ratio of circle radii.

Firstly, the circle centers are aligned in image-

space: the circle centers are transformed into virtual
scene space using inverse view-projection transforma-
tion with a constant depth. This gives a position of the
performer’s circle center [ and a position of a tem-
plate’s circle center I; in the virtual scene. Next, an
updated image aligned position of the template mesh
Py is calculated using formula

Py = Py +6(Iy — 1Iy), (3)

where P is the last position of the template mesh, and
0 = d(C,I;)/d(C, P,) is the ratio of distances to the
position of virtual camera C'; d(x,y) denotes the Eu-
clidean distance between two points.

Secondly, a mesh is shifted towards/from the cam-
era according to the ratio of template circle radius to
the performer circle radius p. This allows rough es-
timation of the final position of performer’s hand Py
from the image aligned position Py using formula

Pu = C + p(Ps = O). )

Note that the obtained position will not produce a per-
fect alignment of the two circles in image-space. This
is caused by the fact, that the position of the mesh
template and the position of the inscribed circle in an
image-space are not in one-to-one correspondence. A
procedure can be performed at multiple iterations in
order to refine to the desired precision of an initial
alignment.

3.7 Post-processing via Gaussian Filtering

The change of the estimated position of the subject
in time might not be continuous. Thus, it is use-
ful to post-process the discontinuities into a contin-
uous movement. In our experiments, we have tried
two methods of post-processing: a Gaussian-based
smoothing and a Kalman filtering. We used local
Gaussian smoothing in the neighborhood of 20-time
steps, and the Extended Kalman Filter (EKT) [JUO4]
implemented in OpenCV. Using the EKT filtering, the
resulting graphs seem visually smoother, but the over-
all error was higher. Therefore, in the final results, the
Gaussian smoothing was used (see Figure[T6).

4 Automatic Hand Calibration

In order to obtain a correct representation of a skeleton
pose from inertial mocap system, a performer’s body
measurements are usually taken in advance. For an in-
ertial mocap glove, we developed an automatic way of
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calculating bone lengths form an RGB image, using a
conventional office scanner. Instead of manual mea-
surement before mocap session, an image of the per-
former’s hand is captured, processed by an algorithm
and exported to the standard format to ensure compat-
ibility with a variety of motion capture software.

4.1 Hand Image Processing

Usually, office scanners produce high-resolution im-
ages. For a better performance, we downscale the im-
age to a predefined constant size preserving the aspect
ratio of the original image. The image is converted into
the HSV color space and the saturation and the value
channels are used for segmentation step. The segmen-
tation is performed in both HSV channels for higher
lighting robustness. For both channels, we analyze the
most frequent value according to the histogram, and if
it is greater than a defined threshold, we discard the
channel from the segmentation step. In case that both
channels should be discarded from a process, the chan-
nel with lower value is kept. The accepted channels are
segmented using threshold of a mean value and the bi-
nary masks are merged using bitwise conjunction op-
erator. The noise in the segmentation result is reduced
using morphology opening. Using this approach, we
are able to perform the automatic segmentation with
both darker and lighter backgrounds.

The largest segmented contour in the image is con-
sidered as a hand. However, there are cases when the
subject wears a ring during scanning, which disjoints
the finger from the palm. We solve the case by search-
ing for multiple contours in the image with an area
larger than an anthropometric constant and join them
afterward.

In order to recognize individual fingers and their ori-
entation in the contour, we implemented a procedure
which is robust enough to handle hand images cap-
tured in different poses for both left and right hand, as
depicted in Figure 0] middle:

1. the convex hull and convexity defects are calcu-
lated from the hand contour,

2. a set of four convexity defects with the largest
depth are taken as the finger separation defects
and the corresponding deepest points are denoted
defect points,

3. the defect point with the longest corresponding
line segment of the convex hull is identified as a
thumb and index finger separation point dp,

4. all the remaining defect points are sorted accord-
ing to the distance from the thumb finger in as-
cending order and they are denoted as d1, d2, ds,

5. finger contours are separated from the palm using
cut lines constructed for the pairs of defect points,
(do,dy) is used to separate the thumb, (d;,d2)
separates the index and middle finger and (dz, d3)
separates the ring and little finger,

6. finger directions are calculated by fitting a line
into contours of individual fingers,

The fingertip points are calculated as an intersec-
tion of the finger directional vectors and the finger con-
tours. The skeleton root branching template is placed
according to the circle inscribed into the palm and
weighted directions of the ring and middle fingers.
The finger bones are estimated from fingertip points
and finger directions taking advantage of human hand
skeleton anthropometry (the Fibonacci sequence). The
final skeleton structure can be seen in Figure [J] right.

4.2 Skeleton Conversion and Export

The extracted raw skeleton is defined in the image
space of the scan. Next, the skeleton is scaled to the
real-world size. The image space dimensions are re-
calculated according to the size of the A4 paper for-
mat. Finally, the skeleton file is exported according to
the skeleton structure. A BVH file is used as a standard
file type for the skeleton export.

5 Results

We demonstrate the results of our approach for captur-
ing the motion and estimating the position of a subject
in a space. The subject wears an XSens suit and the
scene is captured using a Microsoft LifeCam HD 3000
RGB webcam and iDS 3 uEye monochromatic camera
with a fisheye lens.

5.1 Correction of Mocap Suit Data

First, the position in 3D space is approximated using
the standard walking algorithm usually implemented
within the mocap software. In this scenario, the ac-
tor starts to run and finishes the running sequence by
sliding on the ground. The sliding is the stage where
the inertial mocap suit fails. We use the position es-
timated by XSens MVN Studio and export it into a
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Figure 9: An automatic hand skeleton calibration. (Left) an inscribed circle and an estimated hand orientation
for the skeleton root positioning, (center) a visualization of the features detected in finger recognition. (Right)
the final skeleton is calculated according to the finger directions and the skeleton root.

Figure 10: Comparison of (top) XSens MVN tracking and (bottom) our optical-inertial evaluation. In the
second frame, the sliding starts and the mocap system fails to evaluate the position correctly. Images were
captured using a Microsoft LifeCam HD 3000 RGB webcam.

BVH file. Second, the position is evaluated using our
optical-inertial system. Both estimated positions, from
the original method and our camera-based correction,
can be seen in Figure

5.2 Evaluation of Suit Estimated Position

In order to evaluate our method by comparing results
to the ground truth, we evaluate our correction of a
position inside a known environment for the move-
ment in predefined patterns (see Figure [TI). During
this evaluation, the subject moves along the defined
trajectories with known dimensions. During the evalu-
ation, we track three position estimations in time. The
subject is tracked by HTC Vive lighthouses (ground
truth), and position estimation is done by MVN XSens

Studio and our optical-inertial estimation. Compar-
ison of the error difference in Euclidean distance of
the original position from the MVN XSens Studio and
our approach can be seen in Figure [14 Furthermore,
we tried to smooth the raw results from our approach;
the graphs with the smoothed positions of two differ-
ent datasets are shown in Figure[T6 In Figure[12] the
setup used for the evaluation is depicted and described.

5.3 Extracted Hand Skeleton

The automatic skeleton extraction and calibration tool
for inertial gloves works well with various scanner set-
tings. We tested the method on a dataset of approxi-
mately 100 hand scans in different poses under vari-
ous lighting conditions with positive results. A set of
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Figure 11: Evaluation of our method on different trajectories within a grid. The grid has a size of 6 x 6 meters.
The patterns were chosen to fully cover the tracking area in different directions. Moreover, different types of
movement were used for the evaluation, such as walking, jumping, sliding etc.

le.
B,

I

Figure 12: The evaluation setup. (C) the subject wear-
ing a mocap suit (A) is captured by a camera (B) and
tracked by HTC Vive lighthouses. The position es-
timated by the lighthouses is used as a ground truth
when the original mocap suit tracking is compared to
the proposed method.

"
A

samples from the dataset and the results can be seen
in Figure The extracted skeleton was imported di-
rectly into a BVH file, as well as the custom skeleton
file that can be directly loaded in the Synertial glove
mocap system.

5.4 Position Estimation of Mocap Glove

The position estimation of the glove was evaluated in
a similar way as in the case of the suit. To collect the
ground truth data, we used an HTC Vive tracker placed
on the wrist. The overall error of hand position track-
ing to the ground truth was similar in comparison to
the error of the full body tracking (see Figure [15]). Im-
plemented segmentation technique was sufficient for
all tested cases even in situations when dark areas ap-
peared in the camera image.

6 Limitations

The main limitation of the proposed solution is the de-
pendency on the static background subtraction; thus

we are not able to guarantee robust tracking in scenes
with a dynamically changing background. In the case
of background changes, there are edges in the image
space not related to the actor that may drive the track-
ing into a local minimum. Another limitation of the
system is the predefined set of search directions, which
produces discretization errors. If required, the search
space could be sampled more densely at the cost of
higher computation time. The rendered base mesh
is only a rough approximation of the human body; a
highly detailed full-body scan could be used for bet-
ter approximation of the silhouette. However, the base
mesh is easy to compute, affordable to acquire and the
results are good enough for our applications.

The whole tracking system of the body and the
hands can perform in interactive frame-rates, 10 to
15 frames per second, using a naive implementation.
Even highly real-time performance could be achieved
using a more optimized code, or by performing the
tracking on a set of lower resolution camera images. If
the subject is fully occluded in the camera image, the
image-space optimization cannot be performed and for
the position calculation, only the suit data are used.
Thus, in the case of full occlusion, the error of the hy-
brid system is the same as the inertial motion capture
system only.

7 Conclusion and Future Work

A system for optical-inertial synchronization of the
mocap suit and the camera was implemented and de-
scribed in this paper. In general, the system could find
its utilization in applications such as virtual reality,
movement analysis, sports evaluation, and biometrics.
Using a hybrid mocap system, drift issues of inertial
suits can be solved. Moreover, the lack of positioning
capability of inertial mocap was solved, and therefore
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Figure 14: Comparison of error difference in Eu-
clidean distance between the methods and ground truth
obtained using HTC Vive: (red) original position from
inertial suit software and (yellow) our optical-inertial
method. The graph is evaluated on a dataset where the
movement was the most problematic for the original
method (e.g. jumping, sliding).

it can be directly used for subject movement analysis
in 3D space, ergonomic work analysis process or vir-
tual reality games. The inertial-optical hybrid system
is capable of measuring a subject’s position with high
precision even if partially or fully occluded, and all the
computations can be performed in real-time. These
results show promising improvement for inertial suit
position tracking, but more extensive evaluation is re-
quired in the future.

As future work, we would like to use the system for
an automatic and effortless recalibration of the suit.
The correct position and orientation of the joints, eval-
uated from the camera image, can be used for on-line
correction of suit sensors. Moreover, extending the
system for a fully automatic solution would be a good
next goal for future work. The automatic body skele-
ton calibration could be performed using a depth scan-
ner/camera or a more affordable, less precise solution
could be achieved using RGB camera only.

Error (cm)

Frame

Figure 15: The evaluation of hand tracking using six
iterations of image-space alignment only. (Blue) the
Euclidean distance between an estimated glove posi-
tion and the ground truth obtained using HTC Vive
(green) a visualization of the distance to the camera
which shows, that there is low correlation of the dis-
tance to the final error.
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