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Abstract

Automated machining with 3-axis robots requires the
generation of tool paths in form of positions of the tool
tip. For 5-axis robots, the orientations of the tool at
each position needs to be provided, as well. Such a
tool path can be described in form of two curves, one
for the positional information (as for 3-axis machin-
ing) and one for the orientational information, where
the orientation is given by the vector that points from
a point on the orientation curve to the respective point
on the position curve. As the robots need to slow down
for sharp turns, i.e., high curvatures in the tool path
lead to slow processing, our goal is to generate tool
paths with minimized curvatures and a guaranteed er-
ror bound. Starting from an initial tool path, which is
given in the form of polygonal representations of the
position and orientation curves, we generate optimized
versions of the curves in the form of B-spline curves
that lie within some error bounds of the input path.
Our approach first computes an optimized version of
the position curve within a tolerance band of the input
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curve. The outcome of this first step can directly be
applied to 3-axis machining. Based on this first step,
for 5-axis machining the orientation curve needs to be
updated to again fit the position curve. Then, the ori-
entation curve is optimized using a similar approach as
for the position curve, but the error bounds are given
in the form of tolerance frustums that define the tol-
erance in lead and tilt. For an efficient optimization
procedure, our approach analyzes the input path and
splits it into small (partially overlapping) groups be-
fore optimizing the position curve. The groups are cat-
egorized according to their geometric complexity and
handled accordingly using two different optimization
procedures. The simpler, but faster algorithm uses a
local spline approximation, while the slower, but bet-
ter algorithm uses a local sleeve approach. These al-
gorithms are adapted to both the position and orienta-
tion curve optimization. Subsequently, the groups are
combined into a complete tool path in the form of G2-
continuous B-spline curves, where we have one such
curve for 3-axis machining and two such curves de-
fined over the same knot vector for 5-axis machining.

Keywords: NURBS curves, 3-axis and 5-axis Ma-
chining, G2- continuity.

1 Introduction

The sculptured surface machining technology has be-
come a widely used technology in manufacturing en-
gineering, e.g., for shaping metal and other solid ma-
terials. A necessary integral part is the generation of a
milling path. The milling machine cuts along a given
path to obtain the required shape of the workpiece.
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For 5-axis milling, the cutter rotates around the spin-
dle axis, the spindle can move in all three spatial di-
rections, and the workpiece is fixed to a table, which
can also move in two angular directions to allow the
milling tool to have access to the workpiece from dif-
ferent orientations. The flexibility of 5-axis machining
allows for manufacturing of more complicated work-
pieces and for higher quality. However, it requires the
control of the five axes. The first three axes repre-
sent the position of the milling tool in form of xyz-
coordinates, the other two are necessary to represent
the orientation of the table to which the workpiece is
attached, i.e., the angle between the milling tool and
the table (see Figure 1a).

The tool path for 5-axis machining is given in form
of a position curve of the tool tip and a respective
orientation of the tool for each point on the position
curve. We assume that the orientation is given in form
of an orientation curve, where the implied orientation
is given by the vector that points from a point on the
orientation curve to the respective point on the posi-
tion curve. As sudden changes in the tool path re-
quires the robot to slow down to perform the respective
movements, it is desirable to have tool paths with low
curvature on both position and orientation curve. Our
goal is to minimize the overall manufacturing time,
i.e., to generate a curvature-optimized tool path for 5-
axis machining. Our algorithms take a given tool path
and performs an optimization of position and orienta-
tion within given error bounds. As this optimization is
embedded into the manufacturing workflow, it needs
to be efficient, as well.

The input to our algorithm is a sequence of pairs
(p,q) of points. The points p are the positions of the
milling tool on the workpiece, the points q are the ori-
entation points of the milling tool at that time. When
connecting the sequences of points p and q, respec-
tively, they describe the position and orientation curves
in polygonal representation. The orientation vector
q− p given as the difference of the position and the
orientation point can be directed at various angles to
the workpiece depending on the desired manufactur-
ing process. The angle is defined by values of lead and
tilt. Lead is the angle between the normal vector N
of the workpiece’s surface and the orientation vector
q− p of the milling tool in the direction of movement
F . Tilt is the angle between the normal vector N and
the orientation vector q− p of the milling tool perpen-
dicular to the direction of movement F (see Figure 1b).

Our optimization procedure starts with the opti-

Figure 1: (a) 5-axis machining. (b) Orientational in-
formation of the tool in form of lead and tilt

mization of the position curve. The curvature of the
curve shall be minimized within a given tolerance
band. This part of our approach is equivalent to the
optimization for 3-axis machining [SL11]. Then, we
need to synchronize the representation of the orienta-
tion curve with the updated (i.e., optimized) represen-
tation of the position curve. Subsequently, we perform
the optimization of the orientation curve. To get a de-
sired result we use the restriction that corresponding
position and orientation control points have to form an
orientation vector in the same direction and length as
neighboring initial vectors with some small given al-
lowed deviation of lead and tilt (see Figure 2). For
the synchronization of the orientation curve with the
optimized position curve, we need to build new orien-
tation vectors starting at the control points of the opti-
mized position curve with the direction depending on
the direction of the given neighboring orientation vec-
tors with weights proportional to the distance to them.
Based on the given tolerances of lead and tilt, we built
frustums around generated orientation points and re-
strict them to lie within these frustums.

As the optimization of the tool path is embedded
in the manufacturing process, it shall be efficient. We
propose a method that is based on local optimizations,
which are faster to compute than global computations.
Therefore, we first split the toolpath into groups, han-
dle groups individually, and combine the results. The
handling of the individual groups is based on how
complicated their geometry is. Simple groups can be
handled with a simple spline approximation with suf-
ficient quality. Complicated groups are handled using
a more complex sleeve algorithm. Section 3 describes
the overall processing pipeline, which outlines the re-
mainder of the paper.

The resulting position curve is a B-spline curve

C(u) :=
n

∑
j=0

P jNd
j (u), a≤ u≤ b (1)

where the interval [a,b] can be any, P j denotes the j-th
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Figure 2: Black vectors are newly generated orienta-
tion vectors starting from the optimized position con-
trol points. Frustums (green) are built with respect to
given tolerances for lead and tilt (blue). Red curve is
the resulting B-spline orientation curve with the con-
trol polygon shown as dotted dark-red lines.

position control points, and Nd
j denotes the j-th nor-

malized B-spline function of degree d. The B-spline
basis functions are defined over a nonperiodic knot
vector

U = (a, · · · ,a︸ ︷︷ ︸
d+1

,ud+1, · · · ,um−d−1,b, · · · ,b︸ ︷︷ ︸
d+1

), (2)

where m = n+d +1.
The resulting orientation curve shall also be repre-

sented as a B-spline curve

B(u) :=
n

∑
j=0

Q jNd
j (u), a≤ u≤ b

where Q j denotes the j-th orientation control point.
The B-spline basis functions Nd

j and knot vector U are
identical to the position basis functions and knot vec-
tor.

2 Related Work

A lot of work has been done in 5-axis milling and one
of the main topics in this context is to find a proper
position and orientation of the milling tool [JCL03].
To make the best use of 5-axis machines they have to
solve complicated interference problems and to deter-
mine the optimal tool orientations for complex data
machining. Gouging and tool collision (see Figure 3)

are the main problems in 5-axis machining of sculp-
tured surfaces. Gouging denotes the removal of the
excess material in the area of the cutter contact point
due to the mismatch in curvatures between the tool
tip and part of the milling path. Collision is the in-
terference of the cylindrical part of the tool or tool
holder and the workpiece part. The goal is to calculate
an optimal slope of the milling tool based on a given
workpiece trajectory. We, on the other hand, assume
that a tool path is already given. Our goal is to opti-
mize the tool path respect to curvature within an error
bound of the given tool path. Some of existing pa-
pers [KE02, LLL08] are using kinematic constraints
to calculate tool path such as maximum feedrate and
acceleration, and also consider the shape of the tool
tip, which are not available for us on this step.

Figure 3: Gouging (left) and collision (right).

In some papers [FS01, LDLB04] it was suggested
to find position P(u) and orientation Q(u) B-spline
curves by interpolating of position points Pi and ori-
entation points Ai with the restriction that the two B-
spline curves satisfy the criterion

∃H ∈ R so that ∀u,‖Q(u)−P(u)‖= H,

where H is the distance between position and orien-
tation B-spline curves. In our case, we want to get
B-spline curves which are generated using approxi-
mation technique and we are allowed to have a small
given tolerance for H.

The term of double NURBS curve was introduced
to define the desired result in industry. It indicates
that the output should be presented as two NURBS
curves with common knot vector (see [LLYM08,
WMCH07]). When such a double NURBS is gener-
ated it is decomposed into simple parts understandable
by a CNC machine. In our previous work, we [SL11]
described a method to obtain curvature-optimized B-
spline curves for 3-axis machining (see Section 5 for
details). For the 5-axes problem we introduced an
approach that is based on the same ideas of local
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sleeve approach and local G2- continuous spline ap-
proximation, but extends them to handle 5-axis tool
paths [SL18]. In this extended paper of our recent
work [SL18], we present a general approach for han-
dling 3- and 5-axis machining toolpath optimizations.

In literature and even textbooks, there exist many
approaches for smoothing curves in a general setting,
i.e., curves that are not necessarily machining tool-
paths. They are based on local smoothing operators
or on fitting a smooth curve with some parameters to
some noisy data by using some optimization proce-
dure. Such general approaches do typically not con-
sider side constraints such as staying within a given er-
ror tolerance that control the deviation from the given
curve. Moreover, to our knowledge, there is no ap-
proach that handles double NURBS as input. Thus,
these methods are not applicable to our problem at
hand.

3 Overview

As a part of our approach, we build upon two local
approximation algorithms which we use depending on
the arrangement of the initial points. The polygonal
input curves are split into small groups of point se-
quences, to which the local algorithms are applied.
If one of the angles that are formed by three con-
secutive points of a group of points are smaller than
some threshold αsharp, we consider the group as being
complicated and apply the idea of threading splines
through 3D channels (see Section 5.1). This algo-
rithm provides us with a local solution with nearly op-
timal curvature values. However, the optimization in-
volves linear programming methods, which are com-
putationally intense. For the non-complicated (or sim-
ple) groups we use the idea of local non rational cubic
approximation (see Section 5.2). This algorithm pro-
vides acceptable approximation results only for such
simple groups, but it is substantially faster than the
first algorithm. Afterwards, we combine the locally
optimized groups to one global curve. Since an av-
erage workpiece consists mostly of simple parts, the
computation times of our combined algorithm are sig-
nificantly lower.

Based on these two local optimization algorithms,
we handle the 5-axis tool path optimization by first
processing the position curve, then adjusting the ori-
entation curve representation, and finally processing
the orientation curve. The overall work flow of our ap-
proach is depicted in Figure 4. The individual steps

Figure 4: Outline of the process

are described as:

1. Split the sequence of initial position points into
small position groups, estimate the groups’ prop-
erties, and decide which algorithm to apply (see
Section 5).

2. For each position group, generate the local so-
lution using the appropriate algorithm, i.e., local
sleeve approach for complicated groups or spline
approximation for simple groups (see Section 5).

3. For each corresponding orientation group, gener-
ate new orientation vectors based on the obtained
position control points and given initial orienta-
tion vectors (see Section 4.2). Based on the deci-
sion made for the position curve, use a modified
version of the respective algorithm that was ap-
plied to the position group to get the solution for
the orientation group (see Section 6).

4. If we obtain desired results, we continue with the
next position group.
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5. In case a solution could not be found, we need
to detect where the algorithm failed in the orien-
tation group and decide where we need to insert
additional control points to form a constellation
that can be solved. Insert respective additional
knots in the knot vector and recalculate position
control points according to new knots (see Sec-
tion 6).

6. For the orientation group we regenerate orienta-
tion vectors according to changed position con-
trol points and resolve.

7. If all groups have been processed, connect all
groups to double NURBS curve (see Section 7).

4 Allocating Groups

4.1 Splitting into Position Groups

As a first step, we need to partition the given se-
quence of position points into small curve segments.
The curve segments are represented as groups (or se-
quences) of consecutive input points. We want to dis-
tinguish between simple and complicated groups. As
handling complicated groups will be done in a more
time-consuming processing step, it is desirable to keep
the number of complicated groups as small as possi-
ble and to keep the complicated groups themselves as
small as possible. A complex group is a group that
contains at least one sharp corner, i.e., an angle smaller
than a certain threshold αsharp. Consequently, simple
groups are those with no sharp corners. For compli-
cated regions of the path we apply the idea of thread-
ing splines through 3D channels (see Section 5.1), for
simple ones we use the idea of local non-rational cubic
approximation (see Section 5.2).

We implement different grouping criteria based on
the distances between consecutive input points and
the incident angles between the two edges connecting
three consecutive input points, see [SL11].

First, we deploy some global splitting criteria. As
processing time for groups increases superlinearly
with increasing group size, groups shall not exceed a
certain upper limit of points nmax. Also, very long dis-
tances between consecutive points may make it diffi-
cult to optimize for curvature. Hence, if two consecu-
tive input points exhibit a distance larger than a certain
threshold dmax, the two points shall belong to two dif-
ferent groups.

To make the simple groups as large as possible, we
proceed as shown in Figure 5. We iterate through the
points of the input curve. When a new group contains
more than five points with no sharp corner, we gen-
erate a new group that is marked as simple. We keep
on growing that group until the maximum number of
points nmax is reached or we are approaching a sharp
corner. To detect an approaching sharp corner, we use
a look-ahead method. We refer to nahead as the number
of points used for the look-ahead. If this look ahead re-
ports a sharp corner, we finalize the simple group and
start a complicated group. If a sharp corner is reported
before the group reaches the fifth point, the group is
marked as complicated and we keep on adding points.
A complicated group is finalized when nahead points
have been added since the last sharp corner and no
new sharp corner has been reported by the look ahead.
When we have a sequence of more than nmax points
with many angles greater than αsharp, there is no pos-
sibility to finalize the current group without violating
the nmax restriction. The solution is to check angles of
the last 2·nahead-1 points, and finalize the group with
the point which is situated in the middle of the two
points with the sharpest corners. It prevents the group
to stop at the initial point with the sharpest corner.

Figure 5: Complicated and simple regions.

The described solution produces complicated
groups of minimum size. Moreover, the solution for a
complicated group with a single sharp corner is sym-
metric in the sense that the sharp corner is at the mid-
dle point of the group, see Figure 6. Such a symmetric
solution is desirable for milling applications, as it en-
sures that the milling result to both sides of the sharp
corner is similar.

Such a symmetric behavior is also desirable when
dealing with a group of multiple sharp corners. In par-
ticular, a common geometric feature of milling paths
is that of a turn, i.e., a small sequence of points where
the direction of milling in changed to its inverse direc-
tion at some offset. We handle such turns explicitly to
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Figure 6: Symmetric solution for a single corner point,
where the red curve is the control polygon and the blue
curve is the solution.

assure that the middle of the turn corresponds to the
middle of the generated group.

Depending on which criterion caused the formation
of a group, we have different methods of how a group
is to be connected with the subsequent group when
generating the overall curve. We distinguish between
two types of connections, namely a line connection
and an overlapping connection. As mentioned above,
if we have a pair of neighboring points ak and ak+1 in
distance more than dmax, we are finalizing the current
group with the point ak and start the next group with
point ak+1. This type of connection is what we call
a line connection. Examples for line connections are
shown in Figure 7.

To fulfill continuity requirements, we insert three
additional points lying equidistantly on the line
akak+1. We adjust the two groups by adding the three
additional points to the end of the first group (i.e., af-
ter ak) and to the beginning of the second group (i.e.,
before ak+1). When optimizing the curve segments
as described in the subsequent sections, we restrict
the solutions to those that do not change the inserted
points. Consequently, we assure that we maintain G2-
continuity across the line connection.

Figure 7: Line connections between groups of points
that are further apart than distance dmax. Dots represent
control points, which form groups encircled in red that
are connected by straight lines.

Note that individual points can form a group, if they
are more than distance dmax away from both its preced-

ing and succeeding point. In this case that single point
is connected with two line segments in a symmetric
fashion as shown in Figure 6.

If two successive groups have not been separated by
the maximum-distance criterion, the two groups are
close together and, in general, have not been split in
an area of low curvature. Figure 8 shows such a crit-
ical area, where the two groups come together at an
area of rather large curvature. In this case, it is likely
that the optimization of the first group generates a so-
lution with the endpoint on the border of the toler-
ance channel. This fact will make it hard to produce a
G2-continuous transition with low curvature terms be-
tween the two groups. Thus, we want the two groups
to overlap, i.e., we want the groups to share a small
area. Consequently, we call this connection an over-
lapping connection. The overlap is handled as follows:
we first get a solution for the first group and then we
insert at the beginning of the second group the last few
points from the first group. Now the starting point of
the second group, in general, lies well within the tol-
erance channel making it easier to construct a good
solution for the second group.

Figure 8: Necessity for overlapping connection at crit-
ical area.

The generated groups are sufficiently small to ef-
ficiently generate optimized solutions using the algo-
rithms described in Sections 5.1 and 5.2. However, in
some cases the algorithms cannot find a solution. If
that happens, additional points are added to the initial
sequence and the algorithms start over again with the
refined point sequence. In our experiments, it turned
out that this successive refinement and optimization
step can be rather computationally intense. Instead, we
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empirically found a criterion that estimates whether
this refinement step is likely to happen. If yes, we
insert points beforehand, which can significantly re-
duce the computation costs. Using the notations of
Figure 9, the criterion can be formulated as follows:
We insert the midpoint between B and C, if the angle
α at B is small and the distance between B and C is
large when compared to the tolerance ε of the channel.
Those two criteria are combined such that the midpoint
is inserted, if the point (cosα,‖BC‖/ε) lies above the
graph of the empirically found curve shown in Fig-
ure 9.

Figure 9: Point insertion criteria. If the distance di-
vided by the tolerance of the channel is above the
curve, then we insert the point in the middle between
initial points B and C.

4.2 Adjusting Orientation Groups

To solve the orientation part, we first need to create
new initial orientation points based on the already op-
timized position curve and given initial data. The lo-
cation of the new orientation points has to be calcu-
lated in such a way that these points and the corre-
sponding position control points form new orientation
vectors. Direction of the vectors is considered as the
combination of the directions of the two closest initial
vectors proportional to the distance between the op-
timized position control point and the initial position
points which form these closest vectors. Given a posi-
tion control point, we detect to which interval of initial
position points the position control point belongs. We
distinguish three different cases, which are depicted in
Figure 10. For each control point Pi we compute lines
that go through the control point Pi and are perpendic-

ular to the lines of the initial position curve B0, ...,Bm.
We compute those perpendicular lines for the closest
two initial position curve segments Bi−1Bi and BiBi+1.
We determine whether the intersection of the perpen-
dicular lines with the initial position curve segments
belongs to the initial position curve. The following
cases occur (cf. Figure 10):

• Point P1: one of the perpendiculars at point P1 in-
tersects with line B0B1 inside the interval (solid
black line) and another one intersects with out-
side part of line B1B2 (dashed black line). Hence,
point P1 lies in the first interval B0B1 and the clos-
est initial orientation vectors are V1,V2.

• Point P3: two perpendiculars at point P3 intersect
with the lines B1B2 and B2B3 not inside the inter-
vals. Then, we compute the distances of the inter-
section point to the control point P3 (blue lines)
and P3 relates to that segment with shorter dis-
tance.

• Point P4: two perpendiculars at point P4 inter-
sect with lines B2B3 and B3B4 inside the inter-
vals. Then, we again make the decision based on
the distance as in the preceding case.

Figure 10: Control points determination to a proper
interval. Arrows V0, ...,V4 indicate initial orientation
vectors, where the starting points of these vectors are
the initial position points B0, ...,B4. P0, ...,P4 are op-
timized control points of the local position B-spline
curve (red curve), blue lines are perpendiculars to lines
formed by B0, ...,B4.

After we have found the relating initial position
curve segment, we built a new orientation vector from
the position control points with the direction linearly
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interpolated between the closest initial vectors in pro-
portion to the distance from them to the current posi-
tion control point.

5 Position Curve Optimization

In this section we present the algorithm for optimiz-
ing the position curve. This is equivalent to the op-
timization for 3-axis machining. Consequently, this
step is equivalent to the approach described previously
[SL11]. For a comprehensive description of the en-
tire approach, we briefly describe the main aspects of
the algorithm. The main reason of splitting data into
groups is the superlinear time complexity of the algo-
rithm for complicated groups. We have two types of
connections between groups: lines and overlapping.
Separation of groups by line is applicable when the
groups end at neighboring points that are located in
a distance more than some threshold dmax. Between
these groups we can construct a straight-line solution
without spending any calculation time. Overlapping
connections are necessary when we have a large num-
ber of points close to each other and collecting these
points in one group might increase running time of the
algorithm significantly, so we have to separate them.
On the other hand, separating these points in different
groups might occur in areas with high curvature and
it is not possible to have feasible local solutions. In
this case, we have overlapping connections by includ-
ing the same points at the end of the first group and at
the beginning of the second group. Then, we can find
solutions locally and the overlap assures a proper tran-
sition. For details we refer to the literature [SL11].

5.1 Local Sleeve Approach for Complicated
Group

The handling of complicated groups is done by execut-
ing a local method based on the slefe approach by Lut-
terkort and Peters [MP05, LP01, LP99]. Slefe is short
for “subdividable linear efficient function enclosure”.
The idea is to generate two polygons that represent
lower and upper boundaries of a given B-spline curve.
The construction can be generalized to curves in space
by applying the construction in both coordinate-axis
directions of the underlying 2D domain, see Figure 11.
It is, then, referred to as the sleeve approach. After
construction of the piecewise linear sleeve, it is suffi-
cient to constrain this sleeve rather than the original
nonlinear curve to stay within the channel. Carefully

formulated, this approximation results in a linear fea-
sibility problem that is solvable using linear program-
ming.

The construction of a sleeve around the spline curve
is equivalent to enclosing the spline curve with linear
pieces. However, in the channel problem, the coeffi-
cients of the spline curve are unknown and are sought
as the solution of the feasibility problem.

Figure 11: Sleeve ē, e, and channel

Given a B-spline curve

C(u) =
m

∑
j=0

PjNd
j (u),

with control points Pj. Let the B-spline basis functions
Nd

j of degree d be defined over a knot vector (uk). The
control polygon l(u) of the spline is the piecewise lin-
ear interpolant to the control points Pj at the Greville
abscissa

u∗j =
j+d

∑
i= j+1

ui/d,

i.e. l(u j) = Pj.
The weighted second differences ∆2Pi of the control

points are defined as

∆2Pi = P
′
i+1−P

′
i , P

′
i =

Pi−Pi−1

u∗i −u∗i−1

In addition, we define ∆
−
i = min{0,∆2Pi} and ∆

+
i =

max{0,∆2Pi}.
Over the interval [u∗k ,u

∗
k+1] the contribution of the

i-th B-spline to the distance between a spline and its
control polygon is captured by the non-negative and
convex functions
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βki(u∗k) :=

{
∑

k̄
j=i(u

∗
j −u∗i )N

d
j , i > k,

∑
i
j=k(u

∗
i −u∗j)N

d
j , i≤ k,

(3)

(4)

where k̄ and k are the indices of the first and last (at
most) d+1 B-spline basis functions Nd

j whose support
spans u∗k .

Then, we can formulate the restrictions for our
curve by

e(u)≤C(u)≤ ē(u)

where

ē(u) = l(u)+L(∑
i

∆
+
i βki(u∗k),∑

i
∆
+
i βk+1,i(u∗k+1)),

e(u) = l(u)+L(∑
i

∆
−
i βki(u∗k),∑

i
∆
−
i βk+1,i(u∗k+1)),

with u ∈ [u∗k ,u
∗
k+1] and

L(a1,a2) = a1
u∗k+1−u
u∗k+1−u∗k

+a2
u−u∗k

u∗k+1−u∗k
.

The constraints force the sleeve, and thus the
spline, to stay inside the channel. We solve the
linear programming problem using a simplex ap-
proach. The target function we intend to minimize is
∑

m−1
i=1 ∑ j∈{x,y,z}(∆

−
i, j +∆

+
i, j). By minimizing the abso-

lute second differences we are minimizing the curva-
ture of the spline. Sometimes the constraints cannot
be met. In this case, we need to insert further points as
described in Section 4.2.

5.2 Local G2- continuous Spline Approxima-
tion for Simple Groups

Following the algorithm described in the approach pre-
sented by Piegl [PT97] and its modifications pre-
sented in previous work [SL11] we generate a local
approximation scheme for simple groups using two
cubic Bézier curves to assure G2-continuous connec-
tions. Given a sequence of input points qk,..., qk+n,
we set the first control point of the first curve and the
last control point of the second curve to qk and qk+n,
respectively. Using the notations of Figure 12, we set

P0 = qk, R3 = qk+n

The endpoint interpolation property assures C0-
continuity. To assure G1-continuity, we set

P1 = P0 +αTs and R2 = R3 +βTe,

where Ts and Te are the start and end unit tangents
[PT97]. The unit tangents Ts and Te as well as the
values for α and β are defined by the continuity con-
straints with the preceding and succeeding group.

For G2-continuity at the group’s beginning we set

P0−2P1 +P2 = A,

where A is determined by the preceding group (or A=0
for the first group, i.e., if k=0) [PT97]. Using the no-
tations of Figure 12, the respective continuity require-
ments where the two Bézier curves stitch together are
given by

P3 = R0,

P2−P3 = R0−R1,

P1−2P2 +P3 = R0−2R1 +R2.

Figure 12: Local non-rational cubic curve approxima-
tion

To check for validity, we build the tolerance channel
and the sleeve as described in Section 5.1. If the sleeve
lies inside the tolerance channel, the approximation is
sufficiently precise. If not, we do the steps described
in Section 6 and then try to solve the problem for the
modified sequence.

6 Orientation Curve Optimization

We want to generate a smooth B-spline curve for the
orientation of the milling tool based on the obtained
position curve and the newly generated orientation
vectors. We can see in Figure 13 that the orientation
curve repeats the sharp angles of the position curve,
but we want to solve the orientation problem indepen-
dently from the position curve. Therefore, we trans-
form the problem of finding the orientation control
points in space to the problem on the unit sphere. To
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reformulate the problem, we start with orientation vec-
tors which are given as the difference between position
control points and respective interpolated orientation
points. We can imagine that the orientation optimiza-
tion problem is defined on a sphere by moving all posi-
tion points to the sphere’s center (see Figure 14). After
that we solve the problem with the same approach that
was used for the position curve with the modification
that the tolerance channel is replaced by a tolerance
frustum, see Figure 15. The frustum represents the
tolerances for lead and tilt in the orientation vector.
They can be specified independently. In the end we
find the solution to the orientation curve by adding the
computed orientation vectors to the corresponding po-
sition control points, i.e., by transforming back from
the sphere to the spatial representation. We can do this
operation without loss of continuity because by sum-
ming up corresponding control points of the different
B-spline curves we get a new B-spline curve (see Fig-
ure 16).

Figure 13: Green line connects initial position points,
green dashed vectors are initial orientation vectors, red
line is a B-spline position curve, blue line is the control
polygon of B-spline position curve with control points
P0, ...,P9, blue vectors V0, ...,V9 are generated new ori-
entation vectors starting from position control points.

To apply the local sleeve approach for complicated
groups and the spline approximation for simple
groups for solving the orientation curve problem we
have to modify a few parts. The main distinction from
the position curve optimization algorithm is using
the frustums to keep the control points inside them
(see Figure 15). So, we need to add these constraints
additionally to the other restriction we have.

In some cases, we might have an unfeasible orienta-
tion group problem. To solve this problem, we need to
achieve greater flexibility of the desired B-spline curve
by adding additional control points. We find a place
in the orientation curve where the insertion of a new

Figure 14: Described algorithms use the sphere rep-
resentation to solve the orientation part of the prob-
lem. Generated orientation vectors V0, ...,V9 from the
Fig. 13 are placed at the origin of a sphere such that,
control points P0, ...,P9 coincide. We can see that
V0,V1 and V2 are the same for this example, because
they have the same directions in Fig. 13.

Figure 15: Frustums are built around every vector to
restrict control points Q′i to lie inside these frustums.
Control Points Q′4,Q

′
5,Q

′
6 lie inside matching frustums

formed around collinear vectors V4,V5,V6 but they do
not need to be placed at the same position. Brown
dashed line is a control polygon Q′0, ...,Q

′
9 of the green

B-spline curve.
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Figure 16: Obtained solution on the sphere is trans-
formed back to the initial problem using formula Qi =
Pi + Q′i. Brown vectors are the final orientation of the
tool, red line is a position B-spline curve, green line
is a orientation B-spline curve, dashed brown line is a
control polygon of orientation curve. The two B-spline
curves have the same knot vector.

additional control point is required. Usually the solu-
tion fails in places where we have a longer distance be-
tween some control points than in the rest of the group.
Thus, we want to insert new control points in the mid-
dle of this distance. Then, we insert a respective knot
in the existing knot vector and recalculate dependent
control points for the position sequence of the control
points, build new orientation vectors for the changed
points, and resolve the orientation group. Thus, even
if we have to insert additional control points in the ori-
entation curve, we keep proper orientation vectors.

The procedure of the point insertion for position B-
spline curve C(u) as in Equation (1) with a knot vector
U as in Equation (2) is the following [PT97]:
Given a knot ū ∈ [uk,uk+1) that we want to insert into
U to form the new knot vector U′ = (u′0 = u0, . . . ,u′k =
u′k,u

′
k+1 = ū,u′k+2 = u′k+1, . . . ,u

′
m+1 = um), we recalcu-

late the control points using Equation (5) by

P′k−d = Pk−d ,

P′i = αPi +(1−α)Pi−1, k−d +1≤ i≤ k,

P′k+1 = Pk.

For i = k−d +1, . . . ,k we have

α =
ū−ui

ui+d−ui
(5)

We need to generate a new control point in the middle
of the interval Pi−1Pi then build a new orientation vec-
tor from this point and frustum around it to get an ori-
entation control point at the desired place. To achieve
this, we set α = 1

2 . Hence, from Equation (5) we ob-
tain u = ui+d+ui

2 . Afterwards, we recalculate points

P′i−d+1, . . . ,P
′
i and try to solve the orientation problem

again.

7 Combining Groups

To complete the process, we need to put all groups to-
gether in two B-spline curves with common knot vec-
tor. We have to assure G2-continuity at the connec-
tions. To fulfill G2-continuity requirements in case of
a line connection, we insert three additional points ly-
ing on the line akak+1, where neighboring initial points
ak and ak+1 belong to different groups. We adjust two
groups by adding the three additional points to the end
of the first group (i.e., after ak) and to the beginning of
the second group (i.e., before ak+1).

For an overlapping connection of two groups, we
need to distinguish whether the first group is a compli-
cated or a simple one. If the first group is a compli-
cated group, we calculate a new control point lying on
the curve. We obtain this by double knot insertion (see
[SL11]), cutting off the control points after this point,
and adjusting the knot sequence by removing knots af-
ter the inserted ones. The second group will then start
with the last control point of the first group. We did
not modify the shape of the first group’s curve. If the
first group is a simple group, we delete the last few
control points until we find a control point that was an
input point. Since Bézier curves are endpoint interpo-
lating, we can start the second group with that control
point. When solving for the second group, we have
to pick the first three control points of that group such
that G2-continuity is achieved. G0-continuity requires
that the last control point of the first group has to be
equal to the first control point of the second group, for
G1-continuity we need to have the proportional tan-
gent vector of the adjacent parts, and the G2-continuity
condition requires equality of the second derivatives of
the adjacent parts. Using notations of Fig. 17, we ob-
tain:

Pk = R1,
Pk−1−Pk

||Pk−1,Pk||
=

R1−R2

||R1,R2||
,

Pk−2−2Pk−1 +Pk = R1−2R2 +R3.

The procedure of combining groups is described in
[SL11] in details for position curves in 3-axis match-
ing and it is the same for the orientation curve.
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Figure 17: Connecting groups with G2-continuity.

8 Results and Discussion

We first want to present results that investigate the cor-
rectness and quality of the position curves. These are
results that are directly applicable to 3-axis machining,
cf. [SL11]. Figure 18 shows a zoomed-in view of an
area with sharp corners next to straight lines. We can
observe that the curve always stays within the toler-
ance channel, while exhibiting a smooth behavior.

Figure 18: Smooth curve (blue) within tolerance chan-
nel (green) at sharp corners.

We compare the quality of the three local ap-
proaches with our grouping, i.e., local sleeve (left),
local Bézier (right), and our combined approach (mid-
dle), in Figure 19. It can be observed that the local
sleeve approach and our approach produce desirable
results, where our approach is much faster, while the
local Bézier approach is producing undesirable results,
as the resulting curve exhibits some oscillating behav-
ior, where the curve first bends too far to one side,
which is then compensated by a bending to the other
side. This is due to the fact that the Bézier curve only
considers few points during the generation such that a
globally smooth behavior is not well achievable.

Next, we want to consider both position and orien-
tation curves as necessary for 5-axis machining. In

Figure 20 we show a zoomed-in version of a real 5-
axis tool path that was optimized with our approach.
We can observe the correctness of the solution. Gen-
erated orientation vectors have similar directions as the
initial ones and control points of the orientation curve
stay inside the frustums.

Figure 21 depicts the individual steps of the opti-
mization of the 5-axis tool path for a 90 ◦ turn. Using
initial data of the orientation curve and control points
of the position curve, we build frustums around the
newly generated orientation vectors from position con-
trol points and get a solution with orientation control
points inside the corresponding frustum.

Next, we want to investigate the computation time
of our approach. For our experiments, we used a
workpiece which mostly consists of almost straight
parts, rounded parts, and turns as shown in Figure 22
with 209 input pairs of position and orientation points.
Computation time for the 5-axis orientation algorithm
is 0.735 seconds with the tolerance of the channel be-
ing 0.0008 mm and lead and tilt tolerance being 0.1 ◦.
The respective 3-axis optimization when only consid-
ering the position curve takes 0.38 seconds with the
same tolerance of the channel. It takes less than dou-
ble time to compute double amount of initial points
because for almost straight areas of orientation parts
on the sphere we have a very simple solution which
we can get right away or we need to insert much less
(or even none) additional points when compared to the
position part.

We calculate the average and maximum curvature
[SL11] of the orientation B-spline curve separately for
different parts of the workpiece. Table 1 lists the com-
puted curvature values. The upper row was calcu-
lated using tolerances of lead and tilt equal to 0.5 ◦,
the lower row using tolerances equal to 1.2 ◦. We can
observe that for line and simple parts the tolerances
of lead and tilt do not influence the curvature because
the solution is simple and control points are lying in-
side a smaller frustum anyway. However, for rounded
parts and turns we have high values of curvature and
the higher values are obtained for smaller angle tol-
erances, because the curve is forced to make sharper
turns. These tests were performed on the workpiece
shown in Fig. 23.

We also calculate the deviation of the resulting ori-
entation vectors from the interpolated orientation vec-
tors in terms of lead and tilt. We denote by vector D the
forward direction of the lead, where D is in the forward
direction of the curve,−D is the backward direction of
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Figure 19: Results of local sleeve (left), local Bézier (right), and combined approach (middle) with our group-
ing.

line parts simple parts rounded parts parts with turn
av max av max av max av max

1 1.8e-10 9.4e-10 0.0018 0.0377 1.111 2.2009 18.615 329.435
2 1.8e-10 9.4e-10 0.0018 0.0377 1.105 2.0455 18.3175 311.257

Table 1: Maximum and average curvature of parts of the workpiece parts separated in groups by type of initial
data: line, simple parts with almost straight lines, rounded parts, and turns with small angles (see Figure 22).
In the first test (upper row) we use tolerances of lead and tilt equal to 0.5 ◦, in the second test (lower row) the
tolerances are 1.2 ◦.

Figure 20: Optimized 5-axis tool path.

the lead. The vector R denotes the right direction of the
tilt, where R is computed by the cross-product D×O,
where O is the orientation vector of the curve. Left di-
rection of the tilt is the direction −R. For the lead, we
compute the ratio of the angle between the resulting
orientation vector and the plane that is formed by the
left and right points of the frustum, and the given an-
gle of lead tolerance. This ratio is 0 if the interpolated
orientation vector and the resulting orientation vector
are equal, and 1 if the maximum tolerance is used. The
sign of the ratio indicates whether the orientation has
been changed in forward or backward direction. Re-
spectively for tilt, we compute the ratio of the angle
between the resulting orientation vector and the plane
that is formed by forward and backward points of the
frustum, and the given angle of tilt tolerance

We can observe that for the part of the workpiece
as in Figure 24 with allowed lead and tilt tolerance
of 1 ◦ the values of deviation are not very high (see
Figure 25). However, if we decrease the allowed tol-
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Figure 21: Outline of the process of generating a 5-
axis tool path optimization for a 90 ◦ turn. (a) Initial
position and orientation data. (b) Constructed frus-
tums. (c) Generated orientation vectors and curve. (d)
Resulting B-spline curves.

erance to 0.1 ◦ we can see that the deviation for some
parts of the workpiece can reach to 100% in one direc-
tion and after that very quickly to the other direction
(see Figure 27). This effect can be explained by the
example shown in Figure 26. In Figure 26, we show
the orientation vectors from Figure 24 on the sphere.
The first few cyan orientation vectors and its frustums
are almost identical. The subsequent vectors of differ-
ent red colors are starting to slightly change the direc-
tion inside the same frustums. The reason is to keep
the orientation curve straight. The resulting orienta-

Figure 22: Parts of the workpiece. (a) Rounded parts
(b) Turns and almost straight parts.

Figure 23: Parts of the workpiece. High curvature
(higher than one) of the orientation curve are high-
lighted by green points, red line is a position B-spline
curve, orange lines are orientation vectors and orienta-
tion polygon. (a) Rounded parts. (b) Turns.

tion vectors are located in one plane, but the positions
are slightly changing in the direction of the subsequent
frustum.

On the workpiece with rounded parts and turns the
deviation of the resulting vectors are shown in Fig-
ure 28. For the rounded part in Figure 28a, we can see
a zoomed-in picture in Figure 29a, and for Figure 28b
the view from the top is in Figure 29b. In Figure 29a,
we can see that the orientation vectors are frequently
changing its positions with respect to the generated
vectors due to the minimization of the sum of the sec-
ond differences. In Figure 29b, one can observe that
the resulting deviation vectors before the turn changed
the side with respect to the polygon formed by the cen-
ters of the frustums in order to decrease the curvature.

As parameters for our experiments, we define dis-
tance measures as multiples of the tolerance of the
channel ε, which is half of the width of the chan-
nel. A good tradeoff in terms of computation time for
solving individual groups and for splitting and joining
overhead was found by setting the maximum number
nmax of points per group to nmax = 50. A good value
for the distance threshold dmax for splitting into sep-
arate groups was found to be dmax = 300ε. An angle
is reported as a sharp corner, iff its cosine is smaller
than cos(αsharp) =−0.85, because for corners that are
sharper than this value the oscillation increases signif-
icantly when we apply the local spline approximation
method.

Different splitting of the toolpath into groups may
lead to different results of the overall curve. However,
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Figure 24: Part of the workpiece. Yellow points are control points of the position curve, blue are orientation
control points. Pink points are connection points between groups. Green lines are orientation vectors.

Figure 25: Diagram of lead (upper) and tilt (lower)
deviation of the orientation vectors for a given toler-
ance of 1 ◦ for both lead and tilt and the example in
Figure 24.

Figure 26: Resulting vectors and its frustums for the
problem transformed into the sphere problem. All ori-
entation vectors (lines of different color) start from one
position, which is the center of the sphere.

Figure 27: Diagram of lead deviation of the resulting
vectors on the sphere for the example in Figure 24.
The color of the points is the same as the color of the
corresponding vector in Figure 26. Given tolerance is
0.1 ◦ for lead and tilt.

it is guaranteed that the curve remains within the band.
Our splitting strategy is to use a strategy that is sym-
metric with respect to sharp positions, which leads to
symmetric results in the case of symmetric geometry

Figure 28: Parts of the workpiece. Points are con-
trol points, red curve is position B-spline curve, green
curve is orientation B-spline curve. (a) Straight and
rounded parts. Cyan and orange vectors are unit result-
ing orientation vectors, which indicate delay or over-
drive of the resulting orientation vector in comparison
to the initial one. (b) Turns. Dark purple and gray vec-
tors are unit resulting orientation vectors. Different
colors indicate different sides of the polygon formed
by centers of the frustums.

Figure 29: Parts of the workpiece. Purple lines are in-
terpolated orientation vectors. (a) Zoomed-in rounded
part, see Figure 28a. Orange lines are resulting vec-
tors with delay, light blue are resulting vectors with
overdrive. (b) View of the turn from the top, see Fig-
ure 28b. Gray and dark purple lines are resulting vec-
tors on opposite sides of the polygon.

(as desired), and to make the simple groups as large
as possible to get the highest reduction in computation
time. Thus, our primary goal is to generate a desirable
solution, and then the secondary goal is to make the
generation as fast as possible.
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9 Conclusions

We presented an algorithm for generating curvature-
optimized tool paths for 3-axis and 5-axis milling.
The generated tool paths consist of a position B-spline
curve in both cases (3-axis and 5-axis machining) and,
in addition, an orientation B-spline curve in the case of
5-axis machining. The position curve can be handled
like a 3-axis machining tool path. For the orientation
curve, the control points are restricted to stay within a
frustum formed by the lead and tilt tolerances.

To obtain an acceptable quality-speed ratio, we
combine two algorithms: a local version of the sleeve-
algorithm and a local spline approximation with G2-
continuity connections. Corresponding position and
orientation point groups are solved by the same algo-
rithm. We solve the orientation problem on the sphere
to avoid any complications caused by location of posi-
tion points.

The splitting of the original orientation curve into
groups is performed with respect to the corresponding
position point groups and complexity of the groups.
The local spline approximation algorithm is very ef-
ficient and produces good results for simple groups,
while the local sleeve algorithm is less efficient but
produces high-quality results even for complicated
groups.

The created algorithm can be used as a part of a
micro-milling process. This approach provides new
possibilities for calculating velocity, acceleration, and
jerk profiles. The benefits are that profiles are easier
to compute and that the milling can generally be per-
formed with a higher velocity. The latter is essential
for practical purposes, since the higher the velocity of
the tool tip is the faster is the manufacturing process.
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