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Abstract

Spatial tracking is one of the most challenging and im-
portant parts of Mixed Reality environments. Many
applications, especially in the domain of Augmented
Reality, rely on the fusion of several tracking systems
in order to optimize the overall performance. While
the topic of spatial tracking sensor fusion has already
seen considerable interest, most results only deal with
the integration of carefully arranged setups as opposed
to dynamic sensor fusion setups.

A crucial prerequisite for correct sensor fusion is
the temporal alignment of the tracking data from sev-
eral sensors. Tracking sensors are typically encoun-
tered in Mixed Reality applications, are generally not
synchronized. We present a general method to cali-
brate the temporal offset between different sensors by
the Time Delay Estimation method which can be used
to perform on-line temporal calibration. By applying
Time Delay Estimation on the tracking data, we show
that the temporal offset between generic Mixed Real-
ity spatial tracking sensors can be calibrated.

To show the correctness and the feasibility of this
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approach, we have examined different variations of
our method and evaluated various combinations of
tracking sensors. We furthermore integrated this time
synchronization method into our UBITRACK Mixed
Reality tracking framework to provide facilities for
calibration and real-time data alignment.
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1 Introduction

One of the most active topics in the research field of
mixed and especially Augmented Reality is the area
of determining the pose of the user and of physical
objects with which the user interacts. This is gener-
ally referred to as the tracking problem. Especially ap-
plications involving head mounted augmentations (for
example via a head-mounted display) require a high
level of tracking accuracy in order to render convinc-
ing visualizations.

For example an inside-out square marker based
tracking system offers sufficient tracking quality for
an augmentation as long as a marker is visible in the
camera image and the motion is slow enough. As the
movement of the camera gets faster, the accuracy of
the marker tracker decreases. An inertial orientation
sensor on the other hand can handle fast movements,
but generally suffers from drift.

In order to improve the overall accuracy, the con-
cept of sensor fusion was early introduced to solve
various tracking problems (e.g. [Wel96]). Here sen-
sor fusion aims to improve the data quality by measur-
ing the same or related physical properties by multiple
sensors and combining their data to ideally obtain an
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improved measurement. Different concepts of com-
petitive, complementary and cooperative fusion can be
applied [DW88]. The most commonly used competi-
tive methods to fuse data currently include Kalman-
based filters [WB04] and particle filters [DFG01].

1.1 Requirements in Augmented Reality Ap-
plications

In order to correctly combine data from two tracking
sensors, it is necessary to know the exact temporal
relationship between data acquired from the different
sources.

As a simple example consider an indirect tracking
setup, where a mobile, local tracker (for example a
camera mounted on the user’s head mounted display)
is tracking personal objects (for example interaction
devices) in the immediate vicinity of the user. Fur-
thermore, the local tracker itself may be tracked in
a larger environment by permanently installed room-
level trackers (for example a multi-camera outside-in
system). To determine the position and orientation
of the user’s personal objects in the coordinate frame
of the room-level tracker, it is necessary to compute
the concatenation of the spatial relationships between
the room and the local tracker and between the local
tracker and the personal object (i.e., a simple matrix
multiplication in this case.)

A concrete instance of this setup, for example, is the
tracking of tools inside an occluded volume, like the
AR-guided welding scenario inside a car white body,
as discussed in [KSK08]. Here, a welding gun needs
to be tracked in order to augment welding points on the
car body. By introducing a mobile, indirect tracker, as
illustrated in figure 1, the tool can be tracked even if
the worker operates inside the car body.

For the computation of the indirect tracking to be
correct, the concatenation may only be performed on
tracking data that refers to the same moment in time.
Otherwise any movement of the local tracker, for ex-
ample, introduces additional tracking errors on the re-
sulting pose. While advanced sensor fusion meth-
ods (for example [Wel96]) are able to handle asyn-
chronously arriving data and data arriving at different
sample rates, they rely on knowing the temporal rela-
tion between the tracking sensors remains.

This either requires (hardware-)synchronized sen-
sors or suitable interpolation of the data (see [Pus06]),
and thus knowledge of the exact relative temporal
alignment of the sensors. We call sensors, for which

Stud Welding Gun

Mobile 
Tracking System

Stationary 
Tracking System

Body In White

Figure 1: Indirect welding gun tracking setup
(from [KSK08]).

this relationship is known, to be temporally calibrated.
Synchronization can be achieved either by hard-

ware means or by software means on the sensor data.
For hardware synchronization the acquisition of sensor
data is triggered by a central hardware clock (trigger
signal), connected to all participating sensors. Usually
this trigger is derived from one of the sensor oscillators
itself.

Synchronization in software, on the other hand, de-
pends on correctly attaching timestamps to each sen-
sor measurement. Such timestamps are preferably pro-
vided by the sensor itself or otherwise have to be gen-
erated by the tracking framework as soon as the mea-
surement enters the system [Pus06]. In either case the
timestamps of the different sensors need to refer to a
common time base.

1.2 Relative Sensor Lag

The problem of adjusting timestamps between sensors
arises for arbitrary numbers of sensors. For simplicity
we state the problem for a single pair of spatial track-
ing sensors S1 and S2, which we assume to be rigidly
connected.

Considering a motion event happening in the phys-
ical world at time t0, two spatial tracking sensors S1
and S2 sense this event as an analog physical input and
convert it into digital representations at times tS1 and
tS2 . In general, these observation times of the same
event differ, since every type of sensor requires a dif-
ferent amount of time for the internal signal process-
ing. Further delay will be caused by the various com-
munication stacks of the operating systems as well as
network transport of the measurement data. We as-
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sume the measurements to arrive at the tracking frame-
work at times t ′S1

, t ′S2
and to be tagged with according

timestamps at that point in time. As soon as a reli-
able timestamp is attached, all further processing de-
lays can be managed by the tracking framework. A
schematic of the mentioned points in time can be seen
in figure 2.

The accumulated lags can be reduced to one single
delay for each sensor ∆tS1 = t ′S1

− t0 and ∆tS2 = t ′S2
− t0.

For sensor fusion it is only necessary that all sensors
are temporally aligned relative to each other; the off-
set to the unknown true point in time t0 is not relevant
in this context. To align the sensor data for sensor fu-
sion purposes, it is sufficient to determine the temporal
offset ∆t = t ′S1

− t ′S2
.

time

Sensor 1

Sensor 2

tS2

tS1 t'S1

t'S2

ΔtS2

Δt

t0

Figure 2: Schematic visualization of different points
in time which are relevant for a temporal calibration

Note that especially for optical see-through Aug-
mented Reality and related Mixed Reality modes, the
overall latency of the system is also relevant, as ide-
ally visualizations should coincide with real, physical
events. While evidently important, this paper deals
with the determination of the relative lag between
tracking sensors to enable sensor fusion approaches.

In this paper we show how the temporal offset be-
tween different spatial tracking sensors, as used in
many Virtual and Mixed Reality environments, can be
calibrated by applying Time Delay Estimation on the
sensor data of the spatial trackers. While the principle
of Time Delay Estimation is already well established
and used in many contexts, this paper focuses on the
necessary steps required to apply this technique in the
context of Augmented or Mixed Reality, as well as the
resulting performance of the calibration and the im-
provements in tracking quality obtained by temporal
calibration. In this sense this paper builds upon the
large body of research on signal processing and delay

estimation.
The data from two rigidly connected sensors mea-

suring corresponding spatial relationships are com-
pared by computing a similarity measure which de-
termines the level of agreement between the two sen-
sors. An example of this situation is given in figure 3.
A time shift is then applied to one of the data series
and the similarity measure recomputed, interpolating
between measurements as needed. By applying vari-
ous time shifts from a certain window, the best match
can be determined which then is used as the calibrated
value. We use normalized cross-correlation as the sim-
ilarity measure.
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Figure 3: Data of two different senors; the effect of the
temporal shift is discernible.

The presented method is applicable either as an
off-line calibration step or as an on-line recalibration
method which periodically adjusts the sensor calibra-
tion due to temporal drifts of one or both sensors. Such
recalibration is especially relevant in distributed sensor
fusion setups which involve computer communication
or in long term applications. Over longer periods of
time, the offset between two sensors may change due
to temporal drift caused by crystal instabilities (for ex-
ample due to thermal clock drift; See [PPH+12] for
an evaluation.) This also enables calibration of ad-hoc
dynamic sensor fusion setups in highly flexible ubiqui-
tous Augmented Reality tracking scenarios, where no
a priori knowledge about the involved sensors is avail-
able. Discussions of this calibration method can also
be found in [Sch11] and [Hub11].

Being able to precisely align arbitrary tracking sen-
sors is an important benefit for Augmented Reality ap-
plications.

First, as already stated, the knowledge of the tempo-
ral relation of tracking sensors is imperative for correct
fusion of the tracking data. By removing this hurdle
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to sensor fusion in generic Augmented Reality setups,
more scenarios become available both for research and
for actual deployment. This enables many advanced
Mixed Reality tracking modalities, which otherwise
would be limited to specific laboratory setups. Bring-
ing greater tracking power at managed complexity to
application designers helps to make new Augmented
Reality interactions and applications more accessible.
This fits well into the overall vision of the UBITRACK

tracking framework (see also [Kei11]).
Second, being able to dynamically determine

the temporal calibration of generic tracking sen-
sors is essential for dynamic tracking sensor fu-
sion ([PHBK06]), where the Augmented Reality sys-
tem dynamically reacts to changes to the tracking
setup and reconfigures the processing of the track-
ing data at runtime. Dynamic sensor fusion is it-
self a necessary requirement for the vision of Ubiq-
uitous Augmented Reality, where AR interactions
become prevalent in a Ubiquitous Computing sense
(see [Hub11], [MSW+03], [NIH01]).

A third area where synchronization of sensors is
important, is the error evaluation of tracking setups.
Here the data measured by a tracking system under test
is compared to ground-truth data (or reference data)
from a second, more precise system. A temporal offset
between the system under test and the reference data
causes an additional tracking error which disturbs the
actual experiment. Such a scenario where this kind of
calibration was used is described in [GGV+10].

2 Related Work

Several publications deal with the topic of sensor fu-
sion. Examples of successful applications of sensor
fusion for different applications include outdoor Aug-
mented Reality [PT01, RD06] which describes the fu-
sion of separate location and orientation sensors to de-
rive a full pose.

The negative influence of lag on the usability of
AR applications is generally agreed upon (see for ex-
ample [AB94, Hol97, Wel96]). Nevertheless, tempo-
ral calibration considerations for Augmented or Mixed
Reality setups are so far mostly limited to particu-
lar, specialized setups. Mostly components are either
hardware synchronized or the lag between different
sensors is tuned in software by experimental means.
Drawbacks of these approaches are that common off-
the-shelf hardware often lacks suitable hardware syn-
chronization interfaces.

The introduction of the concept of Ubiquitous Aug-
mented Reality [NWB+04] has lead to the Ubiqui-
tous Tracking problem and the need for dynamic sen-
sor fusion to cope with the corresponding, highly dy-
namic scenarios. In [PHBK06] and [HPK+07] a gen-
eral framework was introduced which aims to account
for this by using a pattern based approach working
on spatial relationship graphs. Also the dynamic fu-
sion of inertial tracking devices was successfully inte-
grated [PK08].

One of the major remaining questions in this setup
is how to dynamically account for sensor synchro-
nization. This framework so far accounts for unsyn-
chronized sensors by utilizing a Push/Pull dataflow ar-
chitecture [Pus06] which depends on the correctness
of timestamps associated with sensor measurements.
Also in [NBP+07] and [HPK+07] a general centrally
coordinated peer-to-peer tracking architecture is pro-
posed. With the further application of distributed com-
puting to sensor fusion, the problem of clock synchro-
nization is further emphasized. In these scenarios a
method to temporally calibrate distributed sensors is
of great importance.

In [ASB07] and [ASB04] a sensor synchroniza-
tion scheme is discussed for the application of cal-
ibrating inertial sensors and vision based tracking.
Their approach relies on detecting abrupt movements
in both the camera image as well as the inertial tracker.
In [BS08] the employed camera and inertial tracker are
synchronized via a common clock source that triggers
both sensors. Such a setup using hardware synchro-
nization currently seems to be the most common case,
but in general is prohibitive in ubiquitous tracking sce-
narios.

In [LBMN09, SS04] a static temporal offset was
calibrated in a static manner during the spatial calibra-
tion process. They shift one signal in time while con-
stantly calculating the geometric residual. The tempo-
ral offset which minimizes the geometrical residual is
then taken as the temporal offset (see section 5.2 for
a comparison with our approach). Also a related ap-
proach, which jointly estimates the position and the
relative lag between sensors using a sequential Monte-
Carlo approach was presented in [VMAR07].

In [GFG11] the authors presented a method for
tracking in a wireless sensor network with unsynchro-
nized sensors. Their approach is based on particle fil-
ters and aims to offer a favorable trade-off between
tracking accuracy and low computational burden.

In [JLS97] an in-depth study of latencies occurring
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in an Augmented Reality setup was conducted. In ad-
dition to the measurement of the overall latency they
also performed a calibration of the offset of two sen-
sors during setup time. Instead of using mathematical
optimization methods, an Augmented Reality system
was built and used for manually adjustable prediction
to determine the temporal offset between the sensors
by visual means.

In [JK05] the effect on the resulting sensor fusion
uncertainty of a Kalman filter of imprecisely known
relative time delays between sensors and of uncertain
sampling instants was investigated.

3 General Calibration Strategy

Let TS1 ,TS2 be the sets of all timestamps t ∈ TS1 ∪TS2

where measurements of either S1 or S2 respectively
were taken. We define the two tracking data time series
X = {xt : t ∈ TS1} and Y = {yt : t ∈ TS2} as the actual
sensor data xt , yt from sensors S1 and S2 respectively
at the individual timestamps. Note that the timestamps
at which S1 and S2 acquire data, are in general not the
same, nor do they occur at the same frequency. It isn’t
even guaranteed that they occur at constant frequency.
The only assumption is that they have reliable time
stamps, even though taken with a, yet to be calibrated,
temporal offset.

For each pair of signals a suitable similarity measure
ρX ,Y can be computed that measures the mutual agree-
ment of the signals. Since the measurements of dif-
ferent tracking sensors refer to the same physical ob-
servation, the signals show inherent similarities (even
though they may have been taken from different van-
tage points.)

We assume the similarity measure to be normalized
such that 0≤ ρX ,Y ≤ 1. We call the signals orthogonal
if ρX ,Y = 0 or identical if ρX ,Y = 1. In general ρX ,Y 6=
1 even if the same type of sensor is used since both
measurements will be individually affected by noise
and other kinds of tracking errors.

The time-offset of the two sensor signals can be de-
termined by consecutively shifting one signal by small
offsets against the other signal until a maximum of
agreement is reached. The shift value δ t for which
this maximum is attained is identified as the temporal
offset ∆t between the sensors. This is a well-known
approach in signal processing [Car81] and can be writ-
ten as

∆t = argmaxδ t{ρX ,Y (δ t)},

where Y (δ t) is the signal Y shifted in time by δ t.

3.1 Various properties of Time Series

Time series of tracking data, as encountered in Mixed
Reality spatial tracking settings, exhibit specific prop-
erties. These have to be considered before Time Delay
Estimation can be applied.

Dimensionality Different spatial sensors can sense
different kinds of physical activity. Accordingly, the
degrees of freedom (DoF) of the measurements of the
involved sensors and accordingly the number of di-
mensions required to represent these measurements
vary. The most common types of tracking sensors
measure 3D position, 3D orientation or both simulta-
neously (6 DoF). But also less common combinations
exist, such as 3DoF position and orientation poses on
a 2D surface [WHK+10]. The calibration procedure
has to take these different types of measurements and
their respective representations into consideration.

Registration In order for the signals of two differ-
ent tracking sensors in a Mixed Reality application to
be comparable we assume that the spatial relationship
between the two sensors is static and known and that
the sensor measurements have been transformed into
a common coordinate frame. This spatial relationship
can usually be determined by spatial calibration. Note
that since the accuracy of this spatial calibration also
depends on the temporal alignment of the sensors, the
spatial and temporal calibration should be used in an
iterative or adaptive process. Also, since the tempo-
ral calibration process is assumed to be rather robust
against spatial registration errors, the requirements on
the accuracy of the spatial registration of the tracking
sensors is rather low.

Signal-to-noise ratio The Signal-to-noise ratio
(SNR) of a signal is defined as the ratio between
the power of a signal and the power of the measure-
ment noise, respectively the square of the individual
amplitudes.

SNR =
Psignal

Pnoise
=

(
Asignal

Anoise

)2

,

where P and A are power and amplitude of the respec-
tive components.

For tracking sensors this characteristic can be in-
terpreted as the amount of movement present in the
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signal compared to the measurement noise of the sen-
sor. Time series with large SNR usually feature large
movements or fast velocities, whereas low SNR in-
dicates little activity or very slow movement. Thus
the noise characteristics of the sensor also determines
the minimum movement required to produce a signal
exhibiting sufficient SNR. Note that in the remainder
of the paper, we will not make quantitative statements
about the SNR of specific spatial tracking signals. The
SNR will only be used to distinguish between “high
SNR” signals, which feature motions of large-scale
motions, from signals with “low SNR” where the ex-
tents of the intended movement is within an order of
magnitude of the spatial tracking sensor noise.

Sampling rate Another basic assumption about the
tracking data is that each sensor acquires its corre-
sponding measurement of the real world at periodic in-
tervals in time. Each measurement is called a sample
point of the sensor and the periodicity of these sam-
ples is called the sampling rate. Thus the sampling
rate is a basic characteristic of the sensor that also de-
termines the maximum temporal resolution of tracked
movements. Also while the sample points are usu-
ally assumed to be distributed equidistantly in time,
in practice this assumption does not always hold true.
Also the implications of this are further discussed in
section 4.3.

4 Calibration Procedure Details

As mentioned above, the sensor data that is acquired
by positional sensors usually features high (commonly
3 or 6 DoF) dimensionality. In the course of the pro-
posed calibration method we reduce these measure-
ments to one dimensional signals. To estimate the
temporal offset between the tracking signals, we aim
to compute a single, real-valued similarity value that
characterizes the agreement of the signals for a spe-
cific time shift. By first reducing the multidimensional
tracking data to a one dimensional real-valued time
series, we can directly apply various, common sim-
ilarity measures. While reducing the physical rep-
resentational precision of the sensor signal, the time
calibration primarily utilizes the shape of the motion.
Similar to the situation in machine learning [Fod02],
the reduction in dimensionality may actually enhance
the performance of the time calibration by making the
characteristics of the sensor movement more preva-
lent. This results in improved behavior in low SNR

settings, as will be discussed later. Also comput-
ing the similarity on signals of reduced dimensional-
ity is computationally faster, which enables real-time
on-line calibration in the first place. Furthermore the
adaptation of the calibration process to different pairs
of sensors is simplified, even in cases where no im-
mediate geometrical comparison of the sensor data is
available. The following sections discuss the required
steps (Segmentation, Dimensionality reduction, Inter-
polation, Time Delay Estimation and Aggregation) of
our proposed calibration method in more detail.

4.1 Segmentation

The sensor data is assumed to be an endless stream of
measurements. Thus, as a first step, this data is divided
into small chunks of a fixed length (duration in time).
This serves two specific purposes. Shorter chunks of
data are easier to process, both in terms of speed and
complexity.

Second any on-line estimation requires some sort
of segmentation in order to produce results during the
runtime of the procedure. Although it is possible to ag-
gregate the calibration results of several chunks, global
optimization strategies working on the complete his-
tory of the tracking data in general are not suitable for
on-line synchronization.

The segmentation is performed by accumulating in-
coming samples in a separate buffer for each sensor.
As soon as the required amount of sensor data has
been acquired, the buffer is copied and processed by
the calibration method. Note that if the sampling rates
of the sensors differ, this condition will depend on the
amount of data produced by the slower sensor.

The two basic strategies are to either produce subse-
quent disjoint segments or to produce overlapping seg-
ments, where each new segment consists of a certain
amount of old data with new data appended. Note that
the number of samples in the corresponding chunks
of two sensors may not be equal, especially if the
sample rates of the sensors differ. In the former case
the buffers are completely emptied between segments,
whereas in the latter case the buffers are only partially
cleared and shifted.

4.2 Dimensionality reduction

As previously discussed, the optimization is not per-
formed on high dimensional tracking data, but rather
on one dimensional signals. As mentioned, the critical
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aspect of this reduction is not to maintain the imme-
diate relationship to any specific geometric interpreta-
tion. Rather the similarity of corresponding events as
registered by different sensors should be immediately
evident from the signal.

We will limit the discussion of the projection meth-
ods to the spatial tracking sensor S1 and assume that
the same projection is used for the data of the tracking
sensor S2. In this context, we search for a mapping
f : Rn 7→ R that reduces the high dimensional spatial
measurement data xt from S1 to a 1 dimensional signal
x̂t = f (xt) for all timestamps t. To achieve this goal a
number of different approaches are feasible, which we
classify as follows.

Static computations A simple, yet useful method to
reduce the dimensionality of the spatial tracking data
is to use a static projection or computation for each
measurement. One example of this class of reduction
is just taking the x-component of a 3D position mea-
surement by the projection x̂t = wT

x xt with projection
vector wx = (1,0,0)T . These kinds of projections suf-
fer from a reduced SNR of the projected signal if the
movement of the tracking sensor is mainly perpendic-
ular to the projection vector.

Another kind of static computation is to use the Eu-
clidean norm as a mapping function x̂t =

√
xT

t xt . This
is equivalent to computing the distances to the origin
of the frame of reference for 3D position measure-
ments.

This method also works for incremental rotation
measurements (as used for gyroscope integration, see
also [PK08]). A static projection can be used if the
measurements are represented as incremental rotation
measurements. If the measurements are represented
as a 3-element rotation velocity, the reduction can be
obtained by computing the norm.

Adaptive computations A more advanced method
of dimensionality reduction incorporates the influence
of all measurements in the current segment and adapts
the projection vector accordingly. Similar to the static
case the projection can be defined as x̂t = wT

t xt , where
wt is now dynamically computed for each segment.
It is still constant for each segment, and typically the
same projection will be used for different sensors. To
compute a projection vector the measurements of the
current segment can for example be transformed us-
ing principal component analysis [Fod02]. This de-
termines the directions of the most significant move-

ments in each segment, which can then be used as pro-
jection vectors for the particular segments.

It is also possible to further smooth the projection
behavior of this method, by calculating the projection
vector as a moving average over a limited history of
previous segments. This further increases the robust-
ness against outliers in the spatial tracking data while
reducing the speed of adaption.

Reduction incorporating feedback Another im-
provement of the dimensionality reduction is to con-
sider the final significance of the Time Delay Estima-
tion as determined using a particular projection. This
is a kind of feedback situation, where the choice of the
dimensionality reduction projection is optimized in or-
der to maximize the significance of the final result. It
is easy to see that this increases the computational cost
of the reduction.

Another similar method, which represents a trade-
off between the generality of this approach and the re-
quired computational cost is to consider two different
dimensionality reductions in parallel. The Time Delay
Estimation is then performed on two different pairs of
signals and the final decision between the two projec-
tions is delayed until the significance of both is known.

Pathological sensor data While there are many
variations possible, experience shows that in practice
the time offset calibration of spatial tracking data, as
typically encountered in the context of Mixed Real-
ity scenarios, is usually robust against the choice of
dimensionality reduction for most use cases. We will
shortly discuss the various possible pathological cases,
which may be encountered in the context of spatial
tracking, that render the dimensionality reduction of
tracking data ineffective and thus the temporal calibra-
tion of spatial sensors useless.

The simplest pathological case is zero movement,
thus no events happening in reality. In this case the
signal of the two tracking sensors consist solely of the
sensor-noise. Since the sensors are assumed to be op-
erating independently, the resulting signals are conse-
quently uncorrelated. This obviously leads to useless
results and the inability to determine the relative lag.

Apart from this trivial case each dimensionality re-
duction method may exhibit specific cases, which can
indubitably be constructed. For example the simple
projection of the 3D sensor position onto one of the
primary axes obviously produces unsuitable signals

urn:nbn:de:0009-6-38778, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume 11(2014), no. 3

User Relative lag Std. deviation
1 32.4 ms 2.7 ms
2 32.1 ms 0.33 ms

Table 1: Results of calibration using physiological
tremor

for sensor movements confined to a plane orthogonal
to that axis.

Yet, we argue that, in the context of spatial track-
ing for Mixed Reality applications, these cases are ac-
tually rare in practice, since they require very precise
movements. To show this we conducted an experiment
with two participants and calculated the relative lag
between an infrared system and a coordinate measure-
ment machine (CMM) using only these sensor move-
ments. The task for the participants was to try to keep
the sensors as steady as possible, without actually rest-
ing their arm on a table or similar. This approximates
the trivial pathological case of zero movement by a hu-
man operator.

Due to the physiological (normal) tremor of the
hands of the participants, the signal-to-noise ratio of
these measurements was already sufficient to suc-
cessfully calculate the relative lag. Also the fre-
quency of the physiological tremor (about 6−12 Hz,
see [Lip71]) is well within the temporal resolution of
both tracking systems. This can be seen in table 1. On
the other hand the signal of the reference experiment,
where the sensors were fixed with a vice, produced no
suitable results (as expected).

Thus we argue that while pathological cases for
the individual cases do exist, due to the nature of the
human interaction in Mixed Reality scenarios, these
cases are scarcely encountered in practice. Also the
use of adaptive projections or the power of choice
between different projections can help to make such
cases even more unlikely. Only in scenarios where the
sensors are mounted on computer controlled actuators
or robots, special care has to be taken to tune the di-
mensionality reduction to the data at hand. This exper-
iment also raises the question on the general influences
of human factors on the various parameters of sensor
data and the resulting quality of the temporal calibra-
tion.

4.3 Interpolation

A common assumption in Mixed Reality tracking
frameworks, is that each signal is represented as mea-
surements that are sampled at equidistant points in

time. In practice the sample rate of a single sensor,
as seen from the tracking framework, may not be con-
stant but is subject to jitter and clock noise. In Figure 4
the sample rate of the Faro CMM is depicted and the
variance of the sample rate is discernible.

Figure 4: Sample frequency of the Faro CMM (µ =
48.8Hz , σ = 0.53Hz)

Furthermore the relationship between the sample
points of the two signals is generally not known. Thus
one sample point of the first tracker does not directly
correspond to one sample point of the second sig-
nal. Also, while the individual fluctuations in the up-
date rates can usually simply be handled by assigning
timestamps, these fluctuations complicate the compu-
tation of similarity measures and thus the comparabil-
ity of the signals in general. It is thus necessary to
create a common basis of sample points for both sig-
nals.

Using the originally assigned timestamps for each
measurement of either sensor, we interpolate both sig-
nals using linear interpolation between the individual
sampling points, resulting in continuous signals. This
results in direct one-to-one correspondences of sam-
ples in both signals by sampling from both signals at
common timestamps. This is the foundation for the
similarity computation.

Note that in practice it suffices to perform the ac-
tual interpolation on only one signal. The sampling
points for the similarity computation can conveniently
be chosen to coincide with the sampling points of one
of the two sensors, which makes resampling for this
sensor unnecessary. If the sampling rates of the sen-
sors differ, it is beneficial to interpolate the signal with
the higher sampling rate to minimize interpolation er-
rors.

Also note that in our application, it is preferable to
interpolate the one dimensional projected signal as op-
posed to the higher dimensional tracking data. First,
the interpolation at this stage is more straightforward
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and more clearly defined. This may be harder for
general tracking data (for example different interpre-
tations of quaternion interpolation). Second, the com-
putational complexity is also less due to the reduced
number of dimensions.

This approach also implicitly handles tracking sen-
sors with different update rates. As the tracking signal
is interpolated between the actual sampling points of
the individual sensors, the representation of the per-
ceived motion by the trackers becomes independent of
the concrete sampling rate of the devices and in fact
of the actual sampling instances. The limiting factor
on the acceptable disparity of the sensor update rates
in the context of spatial Augmented Reality tracking is
that the motions which are used for calibration need to
stay below the temporal resolution of the tracking sen-
sor with the slowest update rate. Otherwise significant
motion events may only be observable in one tracking
signal, which renders this particular motion ineffective
for temporal calibration. Usually this is no concern in
Augmented Reality tracking applications.

4.4 Time Delay Estimation (TDE)

After these preprocessing steps we have two one-
dimensional signals X̂ = {x̂t = f (xt) : t ∈ T ′} and
Ŷ = {ŷt = f (yt) : t ∈ T ′} which have been interpolated
and can be assumed to be continuous on the time do-
main T ′.

The actual estimation of the relative lag of these
two signals can be performed by a class of methods
known as Time Delay Estimation (TDE). These meth-
ods are well known and understood in signal process-
ing and are used for applications such as RADAR or
SONAR (see for example [Car81]). Generally, the aim
of Time Delay Estimation is to estimate the temporal
offset of a specific pattern contained in a usually noisy
signal. In many cases, this pattern is first transmitted
by the system and later received as a reflection (e.g.
SONAR/RADAR).

Our application differs, since we do not actively
send out one instance of the pattern we are later look-
ing for. We Rather treat the signal of one spatial track-
ing sensor as the search pattern we are looking for in
the other tracking signal. The offset between these two
pattern instances is the relative lag between the sen-
sors.

As already mentioned to compute the Time De-
lay Estimation, we keep one tracking signal fixed and
shift the second in time relative to the first. For each

possible time shift a similarity measure is computed,
which is maximized over all possible shifts. Finally
the timeshift which maximizes this measure expresses
the time delay estimate.

Cross-Correlation One of the earliest and still most
important similarity measures used for such setups is
the normalized cross-correlation. The computation of
the cross-correlation can be optimized by methods pre-
sented in [JS93] and others.

The textbook definition of the normalized correla-
tion coefficient (also called Pearsons’ correlation) is

ρX ,Y :=
Cov(x,y)

σxσy
.

Calculating the similarity between the signals while
shifting one in time results in a graph as exemplified
in figure 5.

Note that there are also correlation approaches for
vector valued time series (such as the canonical cor-
relation; see for example [Joh97]). While this would
eliminate the need to reduce the dimensionality of the
tracking data, our initial evaluations showed that less
expressive results at increased computational cost are
obtained as compared to the approach using dimen-
sionality reduction.

Resolution of the TDE For a grid-search approach
as outlined above, the resolution is mainly determined
by the step-size of the timeshifts performed, while
the determination of the maximum value becomes in-
creasingly less well-defined with decreasing step-size.
Furthermore the computation time obviously increases
with decreasing step size, making very small steps un-
feasible.

A common approach is to fit a parabola to the simi-
larity measurements and calculate the Time Delay Es-
timation as the vertex of this parabola [BH81]. Both
the maximum correlation value and the rate of increase
of the fitted parabola can be used as indicators on the
significance of the time delay estimate on the individ-
ual segment.

Empirical studies showed that a temporal resolution
of 1 ms is both feasible and useful, especially consid-
ering the update rates of commonly encountered spa-
tial tracking sensors in the domain of Mixed Reality
applications. These update rates typically range from
10 Hz up to 1 kHz. For more exact, but also more time
consuming, computations step width up to 0.01 ms or
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an iterative refinement procedure can be used for the
tracking data.
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Figure 5: Graph of similarity (correlation) vs.
timeshift

4.5 Aggregation

After the Time Delay Estimation has determined the
relative lag of the two spatial trackers on one segment,
multiple segments can be aggregated to identify mean-
ingless results, reject outliers or perform smoothing of
the lag calibration. Since the aim is to be able to per-
form calibration and correction at run-time, also the
combination of segments needs to be performed adap-
tively.

Suitable approaches to aggregate multiple esti-
mates at runtime are the simple moving average, the
weighted moving average using the significance pa-
rameters as discussed above as weights or the moving
median.

5 Evaluation

To validate the method described above we conducted
a series of experiments involving different pairwise
combinations of sensors. Figure 6 shows an exemplary
path along which a sensor-pair was moved. We first
describe the general hardware setup used as well as the
individual experiments undertaken. We then demon-
strate the effectiveness of this approach by an evalua-
tion of registration errors in both unsynchronized and
synchronized sensor fusion. All the evaluations were
performed using the UBITRACK system.

The UBITRACK Mixed Reality tracking framework
provides a wide range of native device drivers for var-
ious spatial tracking sensors, such as vision based, in-
ertial or mechanical trackers. Multiple sensors may be
connected into a single system sharing a common ba-
sis for timestamps, which are rigorously attached as
soon as any measurement enters the system.
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Figure 6: Sample movement used for calibration of the
relative latency. (All axes in meters.)

5.1 Pairwise evaluation setup

The following list summarizes the available hardware
used for the experiments in this study.

• The A.R.T. system1 is an optical, infrared outside-
in tracking system based on retro-reflective ball
markers. Either 6DoF poses for rigid marker con-
stellations or 3DoF positions for single balls can
be obtained. The sample tracking setup can be
seen in figure 7(a).

• The Faro Fusion2 coordinate measurement ma-
chine (CMM) is a high precision measurement
device. It produces 6DoF measurements of the
position and orientation of the tip of the arm. A
picture of the used Faro CMM can be seen in fig-
ure 7(b).

• An inside-out optical square marker tracker (in-
tegrated into the UBITRACK framework; similar
to [KB99]) which can track the 6DoF pose of a
printed square-marker pattern using an off-the-
shelf webcam. This combination can be seen in
figure 7(c).

For all of the following experiments, the following
parameters were selected:

• Segmentation: Simple disjoint segments of 2 s
length.

• Interpolation: Linear interpolation.

• Dimensionality reduction: Computation of the
norm of the 3D-position vector.

1http://www.ar-tracking.com
2http://www.faro.com
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(a) (b) (c)

Figure 7: Sensors used for evaluation; (a) A.R.T. infrared tracker; (b) Faro CMM arm; (c) Square markers with
webcam

• Time Delay Estimation: Normalized cross corre-
lation with grid-search approach.

• Aggregation: Mean of the individual offsets of
the segments.

For all experiments traces of 20 second length were
recorded for each tracking sensor, yielding 10 seg-
ments per tracking sensor. Also each evaluation was
performed two times to ensure the validity of the ob-
tained results.

Setup 1 – A.R.T. vs. Square-Marker In the first
setup we compute the relative lag between the A.R.T.
outside-in tracking system and the inside-out square
marker tracker. For this an A.R.T. marker body was
mounted on top of a USB camera and a square marker
was fixed relative to the A.R.T. cameras. The spatial
relationship graph (SRG) describing this setup can be
seen in figure 8.

A.R.T.

Cam

Mar-
ker

Bodystatic 6DoF
Hand-Eye

tracked
6DoF

static 6DoF
Absolute Orientation

tracked
6DoF

Figure 8: SRG describing the spatial relations of
A.R.T. and square-marker tracker

The poses describing the relationship between the
square marker and the A.R.T. cameras as well as the
relationship between the USB camera and the mounted
A.R.T. body, are static for the duration of the experi-
ment and have both been registered in advance. Note
that this setup combines an inside-out and an outside-
in tracker and thus the actual sensors themselves are

not rigidly connected. Nevertheless the inside-out sen-
sor is rigidly connected to a tracked body from the
outside-in sensor, which suffices to be able to trans-
form the individually sensed motion into a common
frame of reference. The same argument holds for
all following setups, which combine inside-out and
outside-in sensors.

While the pose of the square marker in the A.R.T.
system was determined by solving the absolute ori-
entation problem [Hor87], the relationship between
the USB camera and the A.R.T. body was obtained
by Hand-Eye-Calibration (e.g. [Dan99]). Using these
registrations it is possible to transform the 6DoF poses
of the A.R.T. system into the USB camera system. Fig-
ure 9 shows an example of the evaluation of one data
set. Here the different correlation coefficients for two
different 2s chunks of a 20s recording are plotted as
well as a majority function (pointwise multiplication
of the individual coefficients) over 10 chunks is shown
for illustration.

-0.10 -0.05 0.00 0.05 0.10
s

0.92

0.94

0.96

0.98

1.00

Figure 9: Correlation of 2 chunks and majority func-
tion (dashed)

Setup 2 – A.R.T. vs. Faro CMM In the second
setup we synchronize the A.R.T. outside-in tracking
system with the Faro CMM. The setup consisted of the
Faro CMM inside the tracking range of the A.R.T. sys-
tem, where a single A.R.T. marker ball was mounted
on the tip of the Faro arm. The A.R.T. system in this
scenario is only used for tracking the 3DoF position
of the marker ball (as can be seen in figure 7(b)). The
SRG describing this setup is shown in figure 10.
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Figure 10: SRG describing the spatial relations of
A.R.T. and Faro CMM

The tip of the Faro arm was registered to the cen-
ter of the A.R.T. marker ball which is also the point
tracked by the A.R.T. system. Thus this relationship
does not show up as a static edge in the SRG. The rela-
tionship between the Faro base and the A.R.T. cameras
had to be determined in order to transform the A.R.T.
data into the Faro system. This calibration was again
done by solving the corresponding absolute orienta-
tion problem.

In this setup one of the trackers only delivers 3DoF
position information and thus only the position can be
used for aligning the sensor data.

Setup 3 – Faro CMM vs. Square-Marker This
setup is similar to the combination of the A.R.T. sys-
tem with the square marker tracker. In this case the
USB camera for marker tracking was mounted rigidly
to the Faro head and a square marker was fixed rela-
tive to the base of the Faro base. The spatial relation-
ship graph (SRG) describing this setup is omitted since
it is similar to the SRG as seen in figure 8, with the
Nodes “A.R.T.” and “Body” replaced by “Faro Base”
and “Tip” respectively. Also the calibration procedure
for this setup was similar, featuring an absolute orien-
tation and a Hand-Eye-Calibration.

Results The results of the temporal calibrations are
summarized in Table 2. The relatively large standard
deviations in setups 1 and 3 stem mostly from pro-
nounced temporal instabilities of the square marker
tracker (see also section 7.3). This is especially ev-
ident when compared to the very precise results ob-
tained for setup 2.

Transitivity Another test for the validity of the tem-
poral calibration method is to examine the consistency

Setup Mean Std. Dev.
(1) A.R.T. vs. Square Marker 123 ms 65 ms
(2) A.R.T. vs. Faro 32 ms 0.1 ms
(3) Faro vs. Square Marker 84 ms 30 ms

Table 2: Results of temporal calibrations

of setups involving more than two spatial tracking sen-
sors. When combining more than one pair of sen-
sors the relative lag between the individual pairs has
to obey transitivity. Ideally, the sum of relative lags
respecting the temporal direction along a loop should
be zero or a small residual error.

This is visualized in figure 11 for the combination
of the setups as described above. As can be seen the
directed arrows of the temporal offset indeed form a
loop and the values agree, considering the respective
standard deviations. For a loop starting at the ART
tracker, we get

ε = ∆tART,Faro +∆tFaro,Marker +∆tMarker,ART ≈−7 ms,

which is well within the accuracy of the calibrations
involving the square marker tracker.

t

tA tF tM

123ms

84ms32ms

Figure 11: Transitivity of pairwise sensor offsets

5.2 Comparison with geometric error mini-
mization

To further validate the correctness of our approach
we compared the resulting relative lag of two track-
ing sensors with the time offset which minimizes
the overall geometric error between the sensors. All
other parameter of the calibration procedure were se-
lected identical as in the pairwise evaluation above 5.1.
This is similar to the static calibration approach used
in [LBMN09, SS04]. As can be seen in table 3(a) both
methods yield comparable results. This is expected
since the correct relative lag also reduces the error be-
tween the registered coordinate frames of the sensors.
The experiment in part (a) of 3 was performed using
sensor data with significant SNR.
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Method Mean Std. Dev.
(a) High SNR experiment

Geometrical 32 ms 0.1 ms
Correlation 32 ms 0.1 ms

(b) Low SNR experiment
Geometrical 35 ms 39 ms
Correlation 32 ms 0.3 ms

Table 3: Comparison with geometric error minimiza-
tion

In cases with low SNR, the Time Delay Estimation
exhibits more robust behavior than the geometric min-
imization. We repeated the experiment with the data
from the physiological hand tremor experiment (see
section 4.2). Table 3(b) shows the results. This illus-
trates that under these circumstances, the result of the
geometric optimization still falls in the same range as
before but with massively increased uncertainty. On
the other hand, the correlation-based relative lag esti-
mation performs only slightly worse than before.

5.3 Error reduction

To illustrate the effectiveness of the temporal align-
ment for spatial tracking data as encountered in the
context of Mixed Reality applications, we analyzed the
resulting spatial registration error between two differ-
ent trackers in both the unsynchronized and the syn-
chronized case. The same setup from the A.R.T. vs.
Faro CMM case is being used for this analysis (Setup
2) also using the same calibration procedure parame-
ters.

For this data set the tip of the Faro CMM was
moved in a simple circle with moderate speed of about
1 m/s (determined afterwards). The 3DoF position
of the tip was recorded both by the Faro system and
by the A.R.T. system, which was additionally trans-
formed into the Faro coordinate frame. Figure 12(a)
shows the error vector between measurements from
the A.R.T. system and corresponding points for iden-
tical timestamps as measured by the Faro system dur-
ing the movement. The root mean square (RMS) spa-
tial error between the trackers in this case is 32.1 mm.
From the direction of the vectors the movement of the
marker ball is clearly visible as a systematic misreg-
istration. This indicates a distinctive lag between the
two sensor systems.

The temporal offset in this experiment was, as be-
fore, determined to be 32 ms with 0.1 ms standard de-
viation calculated over all segments. Figure 12(b)

shows the same error vectors (here magnified by a fac-
tor 10) after the timestamps were corrected according
to the determined temporal calibration. In this plot the
direction of the error vectors no longer corresponds to
the direction of the movement and the RMS error has
been reduced to 1.6 mm. The remaining errors mostly
stem from spatial calibration errors and sensor noise.

6 Integration

The method for temporal calibration and alignment
presented thus far was integrated into the UBITRACK

tracking framework. This allows for setup of com-
plex and dynamic sensor fusion scenarios which ben-
efit from formal and automated reasoning about track-
ing environments.

The sensor calibration is integrated as a sepa-
rate calibration method pattern, similar to Hand-Eye-
Calibration or absolute orientation. This pattern is usu-
ally instantiated from tracking management tools such
as trackman [Kei11] for calibration of setups prior to
actual user interaction.

In an actual application of sensor fusion, the data
from each sensor can be synchronized by a timestamp
correcting component. The component is configured
by calibration data obtained in the previous step and
modifies the data stream accordingly. This allows for
online correction for lag between different sensors.

While this method produces very accurate results it
increases the overall latency of the system [JLS97]. In-
stead of holding the data it is also possible to perform
prediction as proposed in [AB94, JLS97].

7 Monte-Carlo evaluation

As illustrated by the explanations in the previous sec-
tions, the design space for time calibration procedures
is large. Due to the large number of possible ap-
proaches to each of the individual steps, the combi-
natorial number of possible implementations grows
quickly beyond what can be reasonably evaluated in
an integrated approach.

To facilitate careful and isolated evaluation of the
various components we have also developed a suitable
statistical simulation framework. Influences of vari-
ous tracking data characteristics, for example the sig-
nal to noise ratio, can be investigated. Furthermore the
impact of different approaches for the various compo-
nents on the overall calibration quality can be directly
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Figure 12: Error vector between measurements from A.R.T. and the Faro system during movement; (a) without
temporal alignment; (b) with temporal alignment; (all axes in meters; magnification factor 10 for figure (b))

compared.
This section will give an overview of the framework

and demonstrate its usefulness on an evaluation of dif-
ferent dimensionality reduction schemes.

In the area of Time Delay Estimation, simulations
have already been used to evaluate the performance
and robustness of methods. For example Fertner and
Sjölund [FS86] have evaluated five different correla-
tion functions by superimposing a sensor signal with
two independent noise signals and subsequently shift-
ing one by a fixed amount in time.

Motivation There are two main applications of the
statistical simulation in this context.

An immediate application is the analysis of the cal-
ibration quality (relative lag in this case) as a func-
tion of the input parameters. The input parameters can
model various adverse effects on the sensor signals
which can interfere with the computations. Thus the
robustness and performance of the calibration method
can be evaluated when subjected to various distur-
bances.

Possible input parameters may include sensor noise,
sensor update rates and jitter as well as registration er-
rors or the relative lag itself.

A second application is to compare the relative per-
formance of the different temporal calibration proce-
dures, when substituting individual components. By
keeping the input parameters fixed across various ex-
periments, the relative performance of different im-
plementations of the various stages can be compared.
Thus individual subsystems of the procedure can be
evaluated individually and the impact of changes on
the overall performance can be assessed. This enables
“one-factor-at-a-time” evaluation of the temporal cali-
bration method.

7.1 Monte-Carlo model

The basis of the statistical framework is a Monte-Carlo
model for simulation of the time calibration process.
This model has seen many uses in randomized tests
and statistical modeling, both in sensor technology and
other areas. In [CHS04] and [CH06] an adaption of
Monte-Carlo simulation to general metrological prob-
lems is given, and our implementation is based on this
description. It is also similar to the methods employed
by [FS86] and [ZA05].

Basic approach Monte-Carlo simulation is basi-
cally a technique for propagating the probability den-
sity function of input quantities X through a (complex)
model f (x). The model can be arbitrarily complex,
since the propagation process is performed numeri-
cally rather than analytically. The result of each sim-
ulation are samples y from the dependent probability
distribution of the output quantity Y . From these sam-
ples various statistical information can be derived and
the behavior of the model under the input parameters
can be inferred.

Simulation overview The general simulation pro-
cess is divided into three phases [CH06]:

1. In a setup phase a suitable statistical model and
the related probability distributions of the input
parameters are determined. This is usually per-
formed by obtaining an appropriate number of
random samples from a real source and estimat-
ing their associated statistical properties. Also the
number of experiments in the simulation is fixed.

2. The computation step, the simulation is per-
formed for each random sample of the setup
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phase. The result is thus a vector of random sam-
ples of the output distribution.

3. In the post-processing phase the simulation re-
sults are gathered and a statistical analysis is per-
formed.

Figure 13 shows an overview of the Monte-Carlo pro-
cess.

Figure 13: Monte-Carlo simulation process (simpli-
fied from [CHS04])

Setup phase In the setup phase the input parameters
for the simulation are determined. This includes defin-
ing the computational model f , the input random vari-
ables X and determining the associated random distri-
butions of the variables. As mentioned above there are
various possibilities for defining relevant input param-
eters such as sensor noise or misregistrations.

Due to its numerical nature, a direct advantage of
the Monte-Carlo method is that the computation model
can be as complex as desired, as long as it is com-
putable. In our case the computational model is the
same computation as the already described temporal
calibration process using suitable sensor signals which
were perturbed according to the input random vari-
able. This also enables comparison of the performance
of various parts of the calibration process, by accord-
ingly modifying the computation. Thus each simula-
tion takes a randomly perturbed sensor signal as in-
put and derives a corresponding relative lag as output,
which is the output random variable in this context.

Also the number of sample values from distribution
and thus the number of simulations is fixed. Depend-
ing on the overall “shape” of the probability distribu-
tions of the input parameters, this influences the uncer-
tainty of the resulting estimate. To achieve reasonable
results, as a general rule sample sizes in the range 105

to 106 should generally be used, although this might
prove unfeasible depending on the complexity of the
computation model. Also an adaptive approach can

determine the number of required samples during the
simulation. For more details see [CHS04] and [CH06].

Simulation and post processing phase The ac-
tual simulation consists of drawing the predetermined
number of samples from the input distribution and
computing the dependent model values.

The individual results of the simulations can be used
to infer statistical properties of the output random vari-
able Y. The most widely used characteristics are the
mean and the variance. These can be approximated
from these sampling using suitable estimators, such as
the sample mean µ ≈ x̄ = 1

n ∑
n
i=1 xi and the unbiased

sample variance σ2 ≈ s2 = 1
n−1 ∑

n
i=1(xi− x̄)2.

7.2 Application to temporal calibration for
Mixed Reality spatial tracking

To adapt the general Monte-Carlo simulation process
to the simulation of relative lag estimation for spatial
tracking in Mixed Reality setups, several peculiarities
have to be noted. The most important aspect is the
generation of the concrete input sensor signals for the
calibration process. Also the careful selection of the
input parameters and their distributions is important
for attaining meaningful simulation results.

Input signal generation The temporal calibration as
described above always operates on two time series of
spatial sensor data and tries to determine the relative
lag between these two. To generate suitable input data
which reflects the random input parameter samples as
drawn in the simulation phase, the following proce-
dure was implemented.

First a library of reference data was produced. Dif-
ferent motions of actual AR users were captured and
processed to reduce the influences of the concrete sen-
sor. This approach has the benefit of keeping the sim-
ulation input close to actual AR use cases. Figure 14
shows the procedure to clean up the captured sensor
data as reference data. The data is first filtered to elim-
inate outliers and to reduce the amount of noise in the
signal. In order to simulate different sampling rates,
the captured data is also smoothly interpolated, thus
resulting in a smooth, continuous signal with no out-
liers.

To achieve representative results, it is further nec-
essary that the library is large enough and contains
a diverse selection of motion captures. The motions
have to cover a large spectrum of diverse scenarios
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Figure 14: Reference Data generation

and should include both slow and fast examples. Also
typical “calibration movements” exercising large, sud-
den movements in many dimensions, can be useful to
determine the baseline performance of various proce-
dures.

To generate an input instance from the reference
data and a concrete sampling of the input parameter
distribution, the reference data is duplicated and the
copy is subjected to specific perturbations according to
the input parameter. This could for example describe a
certain amount of noise or misregistration added to the
signal copy. The copied signal is furthermore shifted
in time by a fixed and known amount. This is the a pri-
ori known relative lag ∆t that the calibration procedure
will try to recover from the input signals. Figure 15
shows the process to derive both input signals from a
chosen reference and the random input parameter sam-
ple.

Reference Data Data perturbation

Random sample x

of input parameter

Temporal Calibration

Temporal Shift

Delay estimate

Figure 15: Simulation input generation

The relative lag estimate ∆̂t is compared to the
known true value and the error is computed. The final
output parameter of the simulation is thus the differ-
ence between the estimated relative lag and the known
true value ε∆t = |∆t− ∆̂t|, rather than the temporal cal-
ibration value. This facilitates comparisons between
different setups.

7.3 Simulation parameters

In the context of temporal calibration, there are various
influences on the sensor signals that can determine the

overall performance of the procedure. The character-
istics of the these input parameters, in our case, are
determined experimentally.

Noise One of the most important and prevalent in-
fluences on sensor data is the sensor noise. The most
common models for noise is Gaussian noise, which
can be represented by an n-dimensional additive ran-
dom variable with Gaussian probability distribution
X ∼ Nn(µ,Σ) with mean µ and covariance matrix Σ.
Furthermore the mean can be assumed to be 0, since
any non-zero offset would model a systematic error
rather than noise. Thus to accurately describe the sen-
sor noise input parameter in the context of Monte-
Carlo simulation, the associated covariance matrix has
to be determined.

To experimentally estimate the noise characteristics
of a tracker, it has to be fixated and the sensor data
should be sampled for a reasonably long period. The
captured data has to be corrected for any systematic
offset, effectively moving the barycenter to the origin
of the reference frame. Special care should be taken to
remove sensor drift from spatial sensors susceptible to
such behavior (e.g. inertial sensors).

We determined the noise behavior of the previously
described A.R.T. and the Faro CMM systems. For
this experiment, the Faro Tip with a mounted A.R.T.
marker was rigidly fixed in a vice on a tripod. This
setup can be seen in figure 16.

Figure 16: Fixed Faro tip with A.R.T. marker ball

From a 42 s long capture, the following covariance
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Mean Std. Dev.
A.R.T. 16.7 ms 0.0804 ms
Faro CMM 20.5 ms 0.0596 ms
Sq. Marker 70.9 ms 17.5 ms

Table 4: Mean sample periods and standard deviations

matrices for the two systems were constructed.

ΣFaro =

 7.9×10−11 −6.0×10−11 1.4×10−11

−6.0×10−11 3.0×10−10 −6.5×10−11

1.4×10−11 −6.5×10−11 2.4×10−10



ΣART =

 6.3×10−10 −3.0×10−10 −2.8×10−10

−3.0×10−10 2.0×10−9 −2.8×10−9

−2.8×10−10 −2.8×10−9 6.1×10−9


For illustration purposes, the corresponding RMS

errors for the two covariance matrices were computed
([Sch06]) as RMSFaro = 0.025 mm and RMSART =
0.094 mm. These values are well within the expected
range of these devices.

The noise behavior of the ART system
was also the topic of previous experiments
([BSP+06], [Sch06], [Kei11]) and similar covari-
ance matrices can be found there.

Clock jitter and drift Of utmost importance for
temporal calibration of spatial tracking sensors in the
context of Mixed Reality applications is the temporal
behavior and the temporal stability of the tracking sen-
sors themselves. To determine these characteristics,
40 s long data segments were captured with each sen-
sor. The difference between two consecutive times-
tamps of the received data can be computed and the
resulting update rates are analyzed with regard to mean
value and stability.

Figure 17 shows the behavior of the three previously
discussed trackers. The results are summarized in ta-
ble 4. Of special interest here is the rather irregular
behavior of the square marker tracker, which in part
can explain the large deviations in table 2 for results
involving this sensor.

Spatial misregistration We previously assumed
that the spatial tracking sensors are spatially registered
to measure the movement in the same frame of refer-
ence. We furthermore stated that the temporal calibra-
tion is rather robust against moderate spatial misreg-
istrations, as long as the overall “shape” of the per-
ceived motion stays similar. Also approaches such

as the canonical correlation (for example [Joh97]) can
produce similarity measures that are invariant against
affine transformations of the input signals.

To evaluate the actual impact of misregistrations and
the performance of such approaches, the spatial diver-
gence of the signals can be used as an input parame-
ter to the simulation. Various models for registration
errors are possible in such a setup, including simple
offsets, spatial transformations or distortions.

An application of the general Monte-Carlo method
to estimate the propagation of such calibration uncer-
tainties in typical AR applications were also investi-
gated by [Kei11].

Relative lag The relative lag between the two in-
put signals can be used as a simulation parameter it-
self. By varying the offset by which the signal copy is
shifted, the procedure can be evaluated against differ-
ent ranges of temporal asynchronicity. A robust proce-
dure is expected to operate independently of the con-
crete temporal offset, as long as it is in its search range.

7.4 Evaluation of dimensionality reduction

As a comprehensive example of the statistical evalu-
ation, we compared a norm based dimensionality re-
duction method with a PCA based one.

As described earlier, the norm based dimensionality
reduction maps each position vector of the sensor mea-
surement to the distance from the origin in its coordi-
nate frame. The second dimensionality reduction first
computes the principal axes of each data segment and
projects the vectors along the longest axis. The other
parameters of the calibration procedure were chosen
as in 5.1. The motivation for this approach is to maxi-
mize the significance of the projected signal.

Input setup The evaluation was performed using
two different sets of reference data A and B of 4 s
length. They are visualized in figure 18.

The first set A was derived from typical calibration
movement featuring fast and large movements involv-
ing many changes of direction. The second set B was
obtained from the experiment measuring the physio-
logical hand tremor (see section 4.2). It also features
many changes of direction, but the overall extent of the
movement is rather small (millimeter range).

For this simulation, noise superimposed on the copy
of the reference signal was chosen to be the input pa-
rameter. For each reference set the copy was shifted by
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(a) (b) (c)

Figure 17: Sample periods for different sensors; (a) A.R.T. infrared tracker; (b) Faro CMM arm; (c) Square
marker tracker

Norm PCA
Mean Std. Dev. Mean Std. Dev.

Path A ≈ 0 ms 0.016 ms ≈ 0 ms 0.017 ms
Path B 0.029 ms 1.0 ms 0.014 ms 0.96 ms

Table 5: Mean error and standard deviation for norm
and PCA based relative lag estimation

∆t = 32.12 ms and noise according to X ∼N3(0,ΣART)
was added to the signal. The number of samples M for
each simulation was set to M = 10000.

Simulation The simulation procedure was per-
formed twice involving different dimensionality re-
duction components. The first simulation was per-
formed using the static norm computation, whereas the
second simulation used the adaptive PCA based pro-
jection.

Result and interpretation For each simulation the
mean and standard deviation of the relative lag error
as compared to the a priori known true value is com-
puted. The results of the four trials (two path with two
dimensionality reductions each) are shown in table 5.

Overall the quality of the simulated calibrations is
still beyond any results achievable in reality, which in-
dicates that the signal perturbation is not yet realis-
tic. Nevertheless this first result already implies that
for low SNR scenarios, the norm based dimensional-
ity reduction may be less robust than the PCA based
dimensionality reduction, whereas in high SNR sce-
narios both perform equally well.

8 Summary and Future Work

We have presented a method to automatically deter-
mine the temporal offset between two tracking sen-

sors, by optimizing a similarity measure between the
different sensors’ data over a range of temporal shifts.
This solution is especially important for using the data
for sensor fusion. We presented an evaluation sup-
porting the feasibility and correctness of the approach.
Furthermore the importance of the correction for a
registration error analysis was demonstrated. We dis-
cussed the feasibility of the method as an online recal-
ibration method integrated into the UBITRACK frame-
work, as well as the importance of such a method in
the context of ubiquitous tracking. We presented a sta-
tistical simulation framework that enables both evalu-
ation of the influence of various sensor and signal pa-
rameters on the calibration quality and enables “one-
factor-at-a-time” evaluation of the various procedure
components. Future work will, as already mentioned,
focus on the influence of the user on the quality of the
measured data and the resulting consequences on the
calibration.

A further venue of inquiry is to apply the tempo-
ral calibration method to unregistered sensor data. By
comparing signals derived from the direct measure-
ments of each sensors, such as the instantaneous ve-
locity derived from the tracked position, sensors for
with the spatial relationship is not known could be
compared. Future work will investigate approaches to
compare sensor signals without known spatial regis-
tration.
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Figure 18: Two paths for dimensionality reduc-
tion evaluation; (a) Distinct “calibration” movement;
(b) Physiological hand tremor (all axes in meters.)
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