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Abstract

Exposure Fusion and other HDR techniques gener-

ate well-exposed images from a bracketed image se-

quence while reproducing a large dynamic range that

far exceeds the dynamic range of a single exposure.

Common to all these techniques is the problem that the

smallest movements in the captured images generate

artefacts (ghosting) that dramatically affect the quality

of the final images. This limits the use of HDR and

Exposure Fusion techniques because common scenes

of interest are usually dynamic. We present a method

that adapts Exposure Fusion, as well as standard HDR

techniques, to allow for dynamic scene without intro-

ducing artefacts. Our method detects clusters of mov-

ing pixels within a bracketed exposure sequence with

simple binary operations. We show that the proposed

technique is able to deal with a large amount of move-

ment in the scene and different movement configura-

tions. The result is a ghost-free and highly detailed

exposure fused image at a low computational cost.

Keywords: HDR, Exposure Fusion, Motion Detec-

tion, Time Varying Photography, Motion Correction
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1 Introduction

The real world spans a dynamic range that is larger

than the limited one spanned by modern digital cam-

eras. This poses a major problem when reproducing

digital images: not all the details in a scene can be

represented with conventional Low Dynamic Range

(LDR) images. These problems typically manifest

themselves in the presence of both overly dark and

bright areas due to under- or over-exposure. High Dy-

namic Range (HDR) photography solves these prob-

lems by combining differently exposed pictures in or-

der to enlarge the dynamic range captured in an im-

age [RWPD05, DM97]. In a similar fashion, Expo-

sure Fusion [MKVR07] solves these problems by di-

rectly fusing a set of LDR images into a single LDR

exposure, dramatically simplifying the image genera-

tion process. However, for these techniques it is es-

sential that the scene is completely static in order to

obtain artefact-free results. In fact, any small change

between exposures produces a particular kind of im-

age artefact called ghosting. This limits the use of both

HDR and Exposure Fusion imagery, as many common

scenes contain dynamic elements.

Our goal is to adapt HDR techniques to dynamic

scenes such that ghosting artefacts are detected and

corrected, while maintaining Exposure Fusion’s com-

putational efficiency. To this end, we propose the

Bitmap Movement Detection (BMD) algorithm. It de-

tects clusters of moving pixels, which then guides the

Exposure Fusion image generation. The best-exposed

exposure is used to recover each area affected by

movement. Hence, our technique produces fused im-

ages that keep only the best exposed part of the scene,

see Figure 1. We show that the proposed method per-

forms well even when the scene is affected by large
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(a) Exposure stack. (b) Standard exposure fusion. (c) Our result.

Figure 1: An example of a dynamic scene. With standard techniques (Exposure Fusion), ghosting will occur.

We propose a simple method to determine dynamic regions that allows us to prevent artefacts.

and substantial changes. Besides qualitative analysis,

we also present a performance analysis, which shows

that BMD can deal efficiently with large images. BMD

is a simple, yet effective technique. The core of the al-

gorithm relies on simple binary operations, and there-

fore its computation time is very fast. However, its

speed does not sacrifice quality: our results are iden-

tical or superior to the ones obtained with other de-

ghosting algorithms. For these reasons we believe

that BMD and Exposure Fusion can be directly im-

plemented on camera hardware to directly capture and

generate fused images of dynamic scenes.

2 Related Work

2.1 Motion detection

Different approaches have been suggested to detect

movement clusters in the LDR images and a large

number of these take the illumination variance at each

pixel into account. Unfortunately, since the exposures

used in the sequence are taken with different expo-

sure configurations, these methods are not directly ap-

plicable for the HDR or Exposure fusion case. Spe-

cific techniques for HDR images have been proposed

as well and can be broadly divided into three groups:

algorithms that use a single exposure to correct each

affected area, ones that use more than one exposure

per affected area, and techniques that prevent artefacts

by directly changing the HDR weighting scheme.

Regarding the first group, Ward et al. [RWPD05]

proposed a method to correct ghosting artefacts based

on the variance of the weighted pixel-intensities; due

to its simple implementation, this technique has been

largely used in the standard HDR image generation

framework as well as in Photosphere [Any] . Unfor-

tunately, this method can easily fail in zones where the

dynamic range is big or the motion is not wide, but

it does work when the ghosts are easily segmentable.

Jacobs et al. [JLW08] address the de-ghosting problem

by using movement detection algorithm based on local

pixel entropy. Entropy is used because this measure is

not affected by intensity values and does not require

camera calibration, but unfortunately it can easily fail

in regions where the dynamic range is quite big.

The second groups of algorithms adopts an ap-

proach that takes into account a different number of

exposures when recovering an affected zone. Gallo

et al. [GGC+09] propose a technique that tries to de-

termine the correct number of exposures to use in

affected areas for the HDR computation by evaluat-

ing, for each patch of the scene, the ghosting value, a

measure of deviation of a certain exposure in a patch

from the model predicted from another patch. The al-

gorithm then builds the HDR image using different

number of exposures on each defined patch, obtain-

ing in this way ghost-free and consistent images. For

the third group of algorithms, Khan et al. [KAR06]

propose a technique that does not need object detec-

tion and movement estimation as it changes directly

and iteratively the HDR weights to minimise the num-

ber of visible artefacts. This is done by evaluating

the pixel membership probability to a non-parametric

model used for the static part of the scenes. The main

idea of the algorithm is that pixels that are part of the

background, i.e. the static part of the scene, are more

commonly present in an image than the ones that do

not belong to it. This approach produces very good re-

sults, but is prohibitively expensive to compute. Mo-

tion detection based on optical flow has been proposed
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(a) Original Exposures: +2 and -2 stops respectively.

(b) Bitmaps generated by MTB.

Figure 2: Bitmap similarity using MTB. MTB for two

different exposures are shown. Note their similarity.

by Kang et al. [KUWS03]. They introduce a technique

that uses optical flow to register pixels in adjacent

video frames so that the images can be correctly com-

bined. Unfortunately this method is very dependent on

the quality of motion estimation, and thus it can eas-

ily fail. Also Bogoni uses motion estimation to tackle

ghosts [Bog00]. After global registration, the author

uses optical flow to perform per-pixel registration, al-

lowing for locally correct exposure blending. Mann

et al. [MMF02] register differently exposed frames

through homographies, which allows them to estimate

the camera response function and thus to produce an

HDR image from a panning video. Mitsunaga and

Nayar [NM00] introduce a technique that reduces the

ghost artefacts by employing spatially varying pixel

exposures.

2.2 Median Threshold Bitmap

The Median Threshold Bitmap (MTB) algorithm, in-

troduced by Ward [War03] for the purpose of image

alignment, is a technique that helps the comparison of

images that are taken under different exposure settings

by effectively removing most of the illumination dif-

ferences between images. The algorithm computes a

binary bitmap image by applying a threshold to the

image based on its median pixels value (mpv). This

bitmap, containing a partitioning into pixels brighter

and darker than the mpv, has been shown to reveal im-

age features while removing intensity differences be-

tween different exposures [War03]. Figure 2 shows

two example bitmaps obtained with the MTB tech-

nique.

2.3 Exposure Fusion

Exposure Fusion [MKVR07] is a technique for di-

rectly fusing a bracketed exposure sequence of LDR

images, which can be used as an alternative to the

standard HDR image generation procedure. This tech-

nique is computationally efficient and does not require

any tone mapping operator to compress the dynamic

range, as the resulting image can be directly displayed

on any common device. The technique does not re-

quire the camera’s response curve, and instead relies

on three simple per-pixel quality measures, contrast,

saturation, and well-exposedness. A weighted average

of these three measures is computed for each pixel,

yielding a per-pixel weight map W for each expo-

sure in the sequence (weight maps are normalised to

sum to one at each pixel). Conceptually, the exposures

are then blended together using the per-pixel weights

from the weight map. However, direct per-pixel blend-

ing produces artefacts, such as seams. The authors

therefore use multi-scale blending to effectively pre-

vent these.

3 Motion Detection

With the help of the MTB image descriptor, we pro-

pose a method to detect and isolate clusters of moving

pixels within an exposure sequence. Figure 3 illus-

trates an overview of the proposed technique, which

we call Bitmap Movement Detection (BMD). For each

image in our exposure stack, we apply the MTB algo-

rithm, yielding a stack of bitmaps Bi. In a static scene,

we expect each pixel to preserve its bit value across all

Bi. If the value changes in a pixel, we know that there

was movement underneath it. So in order to detect

movement pixels, we simply sum up all bitmaps Bi

yielding M∗. Any pixel in M∗ that is neither 0 nor N
(assuming N exposures) is classified as a movement.

M∗ may contain a certain amount of noise that could

lead to incorrect movement detection (see Figure 4,

left image). Hence, we refine M∗ using a sequence

of morphological dilation and erosion in order to gen-

erate the final motion map M . The motion map M for

the sequence shown in Figure 1(a) is reported in Fig-

ure 4 (right image). Eroding and dilating M∗ are two

essential steps that ensure that noise is removed from

the map (i.e. erosion) while each correctly detected re-

gion is enlarged to include the entire motion area (i.e.
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Figure 3: BMD algorithm overview.

Figure 4: Motion map generated from Figure 1(a).

Left image shows M∗; please note that non-black pix-

els are the ones marked for motion detection refine-

ment. Right image shows M after the application of

the morphological operations; each cluster is coded

with a different index, which in the figure is repre-

sented by a colour.

dilation). Thus, to correctly refine M∗, a good balance

between the dilation kernel size, sd, and the erosion

kernel size, se, is required. In Section 4.1 we discuss

how to choose working kernel sizes.

After erosion and dilation are performed, M is con-

verted into a “cluster map” where each identified clus-

ter has a different label, which we compute using Con-

nected Component labelling [HS92]. This yields the

labelled motion map LM with labelled cluster areas Ωi

that contain the moving pixels which cause ghosting

artefacts (see colour-coded labels in Figure 4 right).

3.1 HDR Integration

Now that we have found the regions where motion ap-

pears, we can easily integrate this into HDR imaging.

We will show how to incorporate our proposed mo-

tion detection technique into Exposure Fusion, but a

similar integration is possible into the HDR assembly

stage.

To integrate Exposure Fusion with our motion de-

tection technique we use the labelled motion map LM

as a guide for the final blending. In fact, for each af-

fected area Ωi in LM , we fill in the corresponding pix-

els in the final image with the best available exposure

for that particular area (using Exposure Fusion’s multi-

scale blending). The measure used to define the best

available image is the well-exposedness quality mea-

sure already employed by Exposure Fusion. Given a

cluster Ωi, we average all the well-exposed weights

for each exposure Ik of the stack associated to the Ωi

location. We then use the exposure Ik=maxi that has

the maximum average to fill in Ωi. As a result, each

moving cluster will contain values from a single expo-

sure only, which has to be self consistent and ghost-

free since the cluster is recovered from a single im-

age rather than a combination. In practice, we change

the weight map W of Exposure Fusion in order to se-

lect the appropriate exposure for each affected area Ωi.

I.e. we set the weights to 1 within Ωi for the exposure

k = maxi and to 0 for all other k’s. After the weights

are corrected, Exposure Fusion generates the final im-

age by collapsing the stack using its original weighted

blending.

3.1.1 Multiple Exposures HDR Integration

The choice of using only the best exposed exposure

for each affected area is motivated by the fact that the

use of exactly one exposure ensures consistency of the

final result with respect to the motion. However, this

choice may sometimes reduce the information avail-

able, especially when more than one exposure can be

used to enrich the dynamic range of a particular scene

area (e.g. when a region with motion contains a large

dynamic range). For this reason we developed an alter-

native solution that finds the subset of exposures that

are considered ghost free for each motion blob in the

scene.

Our proposed solution firstly computes a logical

XOR between all the pair-wise combinations of MTB
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(a) Input

stack.

(b) Multi-exposures inte-

gration result.

(c) Best exposure selection

result.

Figure 5: Example of success of the multi-exposure

selection method (P = 15%). Improvements can be

seen in the red rectangles.

s to isolate the exact exposures where movement hap-

pens (separately for each blob bi in the scene). Two

exposures of a pair-wise combination are considered

motion free (for a particular region) if less than P%
of pixels change. This results in a modified labelled

motion map L∗
M where each affected area Ωi is as-

signed to a motion-free sub-set of the original expo-

sures set. Similarly to the single-exposure HDR in-

tegration, the modified motion map L∗
M is used as a

guide for the final HDR blending. However, rather

than using a single, best exposed image for each mo-

tion blob, the blending process takes into account the

exposure sub-set annotated in L∗
M , and blends it us-

ing Exposure Fusion’s weighting scheme. In practice

this means setting to zero the weights of the motion-

affection exposures, and re-normalizing the weights of

the remaining exposures so that they sum up to 1. Fig-

ure 5 shows result of using the multiple exposures in-

tegration (we used P = 15% for this case).

3.2 Discussion

Even though the multiple exposures integration can

improve the information recovered for each moving

area, it is difficult to select the right percentage P%.

When the movement appears only in a small subset of

the input stack, and thus it is totally absent from the

rest of the image set, it is often possible to choose the

right parameter, and the per-exposure XOR computa-

tion is able to effectively isolate the ghost free expo-

sures, improving the final results. Commonly though,

no single parameter P will work for all affected re-

(a) Multi-exposure integration result.

(b) Best exposure selection result.

Figure 6: Example of failure of the multi-exposure in-

tegration technique. Red rectangles shows the arte-

facts in the final image.

gions. If P is too large, no region will be classified

as in motion (despite containing movement), which

creates obvious artefacts. If P is too small, every re-

gion will be classified as containing motion, mostly

due to noise in the MTB, which consequently will not

improve the results over the basic algorithm from the

previous section. This problem is illustrated in Fig-

ure 6, which shows a motion configuration that let the

per-exposure XOR technique fail (please refer to Fig-

ure 11(g) for the whole exposure stack employed for

the image generation). Any large enough P that im-

proves some area, fails in others. Unfortunately, this

behaviour is rather common in many scenes, and thus

we decided to adopt only the best exposed selection in

the recovery of the affected zone to prevent potential

artefacts in the final results.

A potential solution to this problem might be found

in dynamically computing the value of P for each mo-

tion blob and only for the HDR region. We note that

usually not all the affected regions in a scene contain

high dynamic range lighting; for those regions, using

a single exposure would still lead to visually pleasant
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results. For all the other regions (i.e. the HDR, mo-

tion affected regions), one could dynamically apply

the multi-exposure integration using individually op-

timised P values. This could make the multi-exposure

integration more robust, but it will most certainly in-

troduce additional overhead in the final computation,

since the HDR regions need to be localised before to

apply the motion correction. We reserve further inves-

tigation on this for future work.

4 Results

We have tested our algorithm on a variety of dy-

namic scenes to evaluate its performance under dif-

ferent movement configurations. For all the results

discussed in this section, we employed the single-

exposure HDR integration technique described in Sec-

tion 3.1. Figure 1 shows scene with a large num-

ber of small movements that blend in with the back-

ground. Our method generates a flawless image with

no artefacts or inconsistent areas: this is particularly

important because it shows that our method deals well

with small and compact movements, a class of mo-

tion notoriously hard to detect. Moreover, the result

also presents smooth transition between fused zones.

The preliminary motion map M∗, together with the

final motion map M , are reported in Figure 4. Re-

sults obtained on a similar movement configuration are

reported in Figure 12(i) and Figure 12(l), while Fig-

ure 12(c), Figure 13(f) and Figure 13(i) show that our

method can successfully correct small, ghost-affected

areas with a high level of detail.

Figure 8 presents the standard fused image and our

result generated from a stack of 9 exposures of a highly

dynamic scene. This scene includes a large amount of

motion, introduced by the moving crowd, and thus this

movement configuration can be classified as “wide”.

The figure shows that our method considerably im-

proves the final result by erasing all the artefacts and

selecting the appropriate replacement for the corrected

clusters.

Figure 11(c), Figure 12(f) and Figure 13(c) show

the result obtained from a scene with large horizontal

motions, while in Figure 11(f) and 11(i) the objects are

moving towards the camera. Objects moving towards

the camera are particularly hard to detect because the

area they span is very narrow. However our method is

able to handle with this configuration, as well as with

the horizontal motion, with very small errors.

Further, we have compared our results with the tech-

w × h × N EF BMD
550 × 820 × 3 4.22 sec 0.627 sec

683 × 1024 × 3 5.97 sec 0.980 sec

1366 × 2048 × 3 23.08 sec 3.03 sec

550 × 820 × 6 7.15 sec 1.01 sec

550 × 820 × 9 7.15 sec 1.42 sec

683 × 1024 × 6 10.97 sec 1.63 sec

683 × 1024 × 9 10.97 sec 1.96 sec

Table 1: Computational times of the original Exposure

Fusion (EF) and BMD on a 2.4 GHz Intel Core 2 Duo.

niques described in [GGC+09, JLW08, RWPD05] and

with the results obtained with the commercial tool

Photomatix [HDR]. Figure 10 shows results gener-

ated from a set of three, five and four exposures re-

spectively. The methods in [JLW08, RWPD05, HDR]

did not correctly remove the ghosts present in the

scene. Even the method by Gallo et al. [GGC+09]

yields small artefacts in one case (Figure 10(f)), prob-

ably introduced by the use of a gradient-domain tone-

mapping algorithm. Our method identifies and re-

moves all artefacts present in the scenes, while being

more efficient than other methods.

Finally, Table 1 lists the performance obtained by

BMD for different image resolutions (with and with-

out Exposure Fusion) to generate a fused image. BMD

efficiently performs motion detection and it yields very

good performance even when applied to large resolu-

tion images or to large sequences. Moreover, its inte-

gration in Exposure Fusion does not substantially in-

crease the total computational time.

4.1 Discussion and Limitations

The kernel sizes used for the dilation and erosion of

the motion mask affect the final results and a good bal-

ance between the dilation kernel size, sd, and the ero-

sion kernel size, se, is required. For all our results, we

have set se = 3 and sd = 17 and always yielded good

results. As already explained in Section 3, se sets the

sensibility of the algorithm to isolate and eliminate the

outliers from the moving pixels (noisy clusters) and sd
is directly responsible for the enlarging of the mov-

ing clusters when moving pixels are missed. Figure 7

shows the impact of different values of sd and se on an

unrefined motion map M∗.

BMD produces very consistent results, but there

are cases where it fails to detect movement clusters.

For instance, when the input exposure sequence does

not provide enough information to distinguish between
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(a) Best M . se = 3,

sd = 17.

(b) se = 1, sd = 17. (c) se = 10, sd = 17. (d) se = 3, sd = 5. (e) se = 3, sd = 30.

Figure 7: Higher values of sd or lower values of se (Figure 7(e) and 7(b)) lead to an extreme movement detec-

tion; higher values of se or lower values of sd (Figure 7(c) and 7(d)) lead to incomplete movement detection.

Figure 8: Example of standard fused image (top) and

our result (bottom) for a highly dynamic scene.

still and moving objects, BMD cannot completely

identify the motion. This can happen when the scene

(or part of it) is over or under exposed for the whole

sequence, or when the intensity difference between the

moving object and the background is too small, pre-

venting BMD to segment the motion. This is the case

of Figure 11(l), where BMD fails in the portion that is

always over-exposed (red area). Adding another cor-

rectly exposed exposure would prevent the problem.

Further, BMD assumes that the input stack contains

only aligned input images. When this is not the case,

(a) Fused, unaligned stack. (b) Motion Map.

(c) Fused, unaligned stack using BMD.

Figure 9: BMD result on an unaligned input stack.

the algorithm fails in detecting motion regions as non-

aligned areas are wrongly classified as dynamic. For

instance, Figure 9(c) shows the result of employing

BMD motion detection on a stack that contains sub-

tle camera movements (the stack was acquired with

an hand-held camera). Even though the scene is com-

pletely static, the algorithm identifies large dynamic

areas, due to subtle camera movements (Figure 9(b)).

This results in a ghost-free fused image (in contrast

to the ghosting-affected image generated by directly

fusing the stack, Figure 9(a)), which, however, largely

corresponds to a single exposure of the stack, as BMD

erroneously classifies a large percentage of the im-

age as dynamic. This is expected behaviour for un-

aligned images. However, we do not consider this as a

limitation of our technique, as HDR generation meth-
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ods commonly require the input stack to be perfectly

aligned.

Finally, as already discussed in Section 3.2, the pro-

posed single-exposure HDR integration can dramati-

cally reduce the lighting information used in the final

results for HDR, moving areas. We proposed an al-

ternative solutions for these cases, noticing however

that such solution might introduce unwanted artefacts

due to its dependency from a single threshold value

P . Dynamically computing such value for each region

may improve the proposed approach, but it is not clear

whether this might introduce an additional overhead in

the final computation. We reserve such investigation

for future work.

5 Conclusion

We have presented a technique that extends standard

HDR imaging techniques to handle dynamic scenes by

detecting and correcting ghosting artefacts introduced

by moving objects. We have shown that our algorithm

works well on a large variety of movement configu-

rations and that it yields fast computation times. The

technique is successful even when the motion affects

a substantial part of the scene or when the movements

are located on the background and are very compact.

The results are similar or better than the ones obtained

by other techniques. Nonetheless, our motion detec-

tion method is much faster, and the combination with

Exposure Fusion makes it a highly efficient technique.

Our motion detection relies only on simple binary op-

erations, and thus it can be easily implemented directly

on camera hardware. Moreover, we believe fused im-

ages could be generated almost in real time when im-

plemented on GPUs.
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(a) Our result. (b) Jacobs et al. [JLW08].

(c) Ward et al. [RWPD05]. (d) Photomatix [HDR].

(e) Our result. (f) Gallo et

al. [GGC+09].

(g) Jacobs et al. [JLW08].(h) Ward et

al. [RWPD05].

(i) Photomatix [HDR].

(j) Our result. (k) Gallo et al. [GGC+09].

(l) Jacobs et al. [JLW08]. (m) Ward et al. [RWPD05]. (n) Photomatix [HDR].

Figure 10: Variety of comparisons. The exposure stacks used to generate the images in the second and third

example are courtesy of Gallo et al. [GGC+09]
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(a) Exposure

stack.

(b) Standard fused image. (c) Result obtained with BMD algorithm.

(d) Exposure stack. (e) Standard fused image. (f) Our result.

(g) Exposure

stack.

(h) Original fused image. (i) Our result.

(j) Exposure stack. (k) Original fused image. (l) Our result. Please note the detection failure in the

red box and the correct detection in the blue box.

Figure 11: Variety of results. The images in Figure 11(j) are courtesy of Gallo et al. [GGC+09].
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(a) Exposure

stack.

(b) Standard fused image. (c) Result obtained with BMD algorithm.

(d) Exposure

stack.

(e) Standard fused image. (f) Our result.

(g) Exposure

stack.

(h) Original fused image. (i) Our result.

(j) Exposure stack. (k) Original fused image. (l) Our result.

Figure 12: Variety of results.
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(a) Exposure

stack.

(b) Standard fused image. (c) Result obtained with BMD algorithm.

(d) Exposure

stack.

(e) Standard fused image. (f) Our result.

(g) Exposure

stack.

(h) Original fused image. (i) Our result.

Figure 13: Variety of results.
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